Skip to main content

The Generation of Zinc Finger Proteins by Modular Assembly

  • Protocol
  • First Online:
Engineered Zinc Finger Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 649))

Abstract

The modular assembly (MA) method of generating engineered zinc finger proteins (ZFPs) was the first practical method for creating custom DNA-binding proteins. As such, MA has enabled a vast exploration of sequence-specific methods and reagents, ushering in the modern era of zinc finger-based applications that are described in this volume. The first zinc finger nuclease to cleave an endogenous site was created using MA, as was the first artificial transcription factor to enter phase II clinical trials. In recent years, other excellent methods have been developed that improved the affinity and specificity of the engineered ZFPs. However, MA is still used widely for many applications. This chapter will describe methods and give guidance for the creation of ZFPs using MA. Such ZFPs might be useful as starting materials to perform other methods described in this volume. Here, we also describe a single-strand annealing recombination assay for the initial testing of zinc finger nucleases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emerson, R.O. and Thomas, J.H. (2009) Adaptive evolution in zinc finger transcription factors. PLoS Genet. 5, e1000325.

    Article  PubMed  Google Scholar 

  2. Pavletich, N.P. and Pabo, C.O. (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science. 252, 809–817.

    Article  PubMed  CAS  Google Scholar 

  3. Segal, D.J. and Barbas, C.F., III (2001) Custom DNA-binding proteins come of age: polydactyl zinc-finger proteins. Curr Opin Biotechnol. 12, 632–637.

    Article  PubMed  CAS  Google Scholar 

  4. Dreier, B., Beerli, R.R., Segal, D.J., Flippin, J.D., and Barbas, C.F., III (2001) Development of zinc finger domains for recognition of the 5ʹ-ANN-3ʹ family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem. 276, 29466–29478.

    Article  PubMed  CAS  Google Scholar 

  5. Dreier, B., Fuller, R.P., Segal, D.J., Lund, C.V., Blancafort, P., Huber, A., Koksch, B., and Barbas, C.F., III (2005) Development of zinc finger domains for recognition of the 5ʹ-CNN-3ʹ family DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem. 280, 35588–35597.

    Article  PubMed  CAS  Google Scholar 

  6. Liu, Q., Xia, Z., Zhong, X., and Case, C.C. (2002) Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J Biol Chem. 277, 3850–3856.

    Article  PubMed  CAS  Google Scholar 

  7. Segal, D.J., Dreier, B., Beerli, R.R., and Barbas, C.F., III (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5ʹ-GNN-3ʹ DNA target sequences. Proc Natl Acad Sci USA. 96, 2758–2763.

    Article  PubMed  CAS  Google Scholar 

  8. Bae, K.H., Kwon, Y.D., Shin, H.C., Hwang, M.S., Ryu, E.H., Park, K.S., Yang, H.Y., Lee, D.K., Lee, Y., Park, J., Kwon, H.S., Kim, H.W., Yeh, B.I., Lee, H.W., Sohn, S.H., Yoon, J., Seol, W., and Kim, J.S. (2003) Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol. 21, 275–280.

    Article  PubMed  CAS  Google Scholar 

  9. Liu, Q., Segal, D.J., Ghiara, J.B., and Barbas, C.F., III (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci USA. 94, 5525–5530.

    Article  PubMed  CAS  Google Scholar 

  10. Ramirez, C.L., Foley, J.E., Wright, D.A., Muller-Lerch, F., Rahman, S.H., Cornu, T.I., Winfrey, R.J., Sander, J.D., Fu, F., Townsend, J.A., Cathomen, T., Voytas, D.F., and Joung, J.K. (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. 5, 374–375.

    Article  PubMed  CAS  Google Scholar 

  11. Maeder, M.L., Thibodeau-Beganny, S., Osiak, A., Wright, D.A., Anthony, R.M., Eichtinger, M., Jiang, T., Foley, J.E., Winfrey, R.J., Townsend, J.A., Unger-Wallace, E., Sander, J.D., Muller-Lerch, F., Fu, F., Pearlberg, J., Gobel, C., Dassie, J.P., Pruett-Miller, S.M., Porteus, M.H., Sgroi, D.C., Iafrate, A.J., Dobbs, D., McCray, P.B., Jr., Cathomen, T., Voytas, D.F., and Joung, J.K. (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 31, 294–301.

    Article  PubMed  CAS  Google Scholar 

  12. Isalan, M., Choo, Y., and Klug, A. (1997) Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc Natl Acad Sci USA. 94, 5617–5621.

    Article  PubMed  CAS  Google Scholar 

  13. Isalan, M., Klug, A., and Choo, Y. (2001) A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat Biotechnol. 19, 656–660.

    Article  PubMed  CAS  Google Scholar 

  14. Urnov, F.D., Miller, J.C., Lee, Y.L., Beausejour, C.M., Rock, J.M., Augustus, S., Jamieson, A.C., Porteus, M.H., Gregory, P.D., and Holmes, M.C. (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 435, 646–651.

    Article  PubMed  CAS  Google Scholar 

  15. Greisman, H.A. and Pabo, C.O. (1997) A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science. 275, 657–661.

    Article  PubMed  CAS  Google Scholar 

  16. Joung, J.K., Ramm, E.I., and Pabo, C.O. (2000) A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc Natl Acad Sci USA. 97, 7382–7387.

    Article  PubMed  CAS  Google Scholar 

  17. Carroll, D. (2008) Progress and prospects: Zinc-finger nucleases as gene therapy agents. Gene Ther. 15, 1463–1468.

    Article  PubMed  CAS  Google Scholar 

  18. Kolb, A.F., Coates, C.J., Kaminski, J.M., Summers, J.B., Miller, A.D., and Segal, D.J. (2005) Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction. Trends Biotechnol. 23, 399–406.

    Article  PubMed  CAS  Google Scholar 

  19. Gordley, R.M., Gersbach, C.A., and Barbas, C.F., III (2009) Synthesis of programmable integrases. Proc Natl Acad Sci USA. 106, 5053–5058.

    Article  PubMed  CAS  Google Scholar 

  20. Camenisch, T.D., Brilliant, M.H., and Segal, D.J. (2008) Critical parameters for genome editing using zinc finger nucleases. Mini Rev Med Chem. 8, 669–676.

    Article  PubMed  CAS  Google Scholar 

  21. Sera, T. (2009) Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev. 61, 513–526.

    Article  PubMed  CAS  Google Scholar 

  22. Bibikova, M., Golic, M., Golic, K.G., and Carroll, D. (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 161, 1169–1175.

    PubMed  CAS  Google Scholar 

  23. Price, S.A., Dent, C., Duran-Jimenez, B., Liang, Y., Zhang, L., Rebar, E.J., Case, C.C., Gregory, P.D., Martin, T.J., Spratt, S.K., and Tomlinson, D.R. (2006) Gene transfer of an engineered transcription factor promoting expression of VEGF-A protects against experimental diabetic neuropathy. Diabetes. 55, 1847–1854.

    Article  PubMed  CAS  Google Scholar 

  24. Sander, J.D., Zaback, P., Joung, J.K., Voytas, D.F., and Dobbs, D. (2009) An affinity-based scoring scheme for predicting DNA-binding activities of modularly assembled zinc-finger proteins. Nucleic Acids Res. 37, 506–515.

    Article  PubMed  CAS  Google Scholar 

  25. Cathomen, T. and Joung, J.K. (2008) Zinc-finger nucleases: the next generation emerges. Mol Ther. 16, 1200–1207.

    Article  PubMed  CAS  Google Scholar 

  26. Santiago, Y., Chan, E., Liu, P.Q., Orlando, S., Zhang, L., Urnov, F.D., Holmes, M.C., Guschin, D., Waite, A., Miller, J.C., Rebar, E.J., Gregory, P.D., Klug, A., and Collingwood, T.N. (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA. 105, 5809–5814.

    Article  PubMed  CAS  Google Scholar 

  27. Minczuk, M., Papworth, M.A., Miller, J.C., Murphy, M.P., and Klug, A. (2008) Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res. 36, 3926–3938.

    Article  PubMed  CAS  Google Scholar 

  28. Kim, H.J., Lee, H.J., Kim, H., Cho, S.W., and Kim, J.S. (2009) Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 19, 1279–1288.

    Article  PubMed  CAS  Google Scholar 

  29. Segal, D.J., Beerli, R.R., Blancafort, P., Dreier, B., Effertz, K., Huber, A., Koksch, B., Lund, C.V., Magnenat, L., Valente, D., and Barbas, C.F., III (2003) Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry. 42, 2137–2148.

    Article  PubMed  CAS  Google Scholar 

  30. Zykovich, A., Korf, I., and Segal, D.J. (2009) Bind-n-Seq: high-throughput analysis of in vitro protein-DNA interactions using massively parallel sequencing. Nucleic Acids Res. 22, e151.

    Google Scholar 

  31. Bibikova, M., Carroll, D., Segal, D.J., Trautman, J.K., Smith, J., Kim, Y.G., and Chandrasegaran, S. (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol. 21, 289–297.

    Article  PubMed  CAS  Google Scholar 

  32. Alwin, S., Gere, M.B., Guhl, E., Effertz, K., Barbas, C.F., III, Segal, D.J., Weitzman, M.D., and Cathomen, T. (2005) Custom zinc-finger nucleases for use in human cells. Mol Ther. 12, 610–617.

    Article  PubMed  CAS  Google Scholar 

  33. Szczepek, M., Brondani, V., Buchel, J., Serrano, L., Segal, D.J., and Cathomen, T. (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. 25, 786–793.

    Article  PubMed  CAS  Google Scholar 

  34. Beltran, A.S., Sun, X., Lizardi, P.M., and Blancafort, P. (2008) Reprogramming epigenetic silencing: artificial transcription factors synergize with chromatin remodeling drugs to reactivate the tumor suppressor mammary serine protease inhibitor. Mol Cancer Ther. 7, 1080–1090.

    Article  PubMed  CAS  Google Scholar 

  35. Filippova, G.N., Fagerlie, S., Klenova, E.M., Myers, C., Dehner, Y., Goodwin, G., Neiman, P.E., Collins, S.J., and Lobanenkov, V.V. (1996) An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol. 16, 2802–2813.

    PubMed  CAS  Google Scholar 

  36. Imanishi, M., Nakamura, A., Morisaki, T., and Futaki, S. (2009) Positive and negative cooperativity of modularly assembled zinc fingers. Biochem Biophys Res Commun. 387, 440–443.

    Article  PubMed  CAS  Google Scholar 

  37. Mandell, J.G. and Barbas, C.F., III (2006) Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res. 34, W516–W523.

    Article  PubMed  CAS  Google Scholar 

  38. Sander, J.D., Zaback, P., Joung, J.K., Voytas, D.F., and Dobbs, D. (2007) Zinc finger targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res. 35, W599–W605.

    Article  PubMed  Google Scholar 

  39. Handel, E.M., Alwin, S., and Cathomen, T. (2009) Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol Ther. 17, 104–111.

    Article  PubMed  Google Scholar 

  40. Cathomen, T., Segal, D.J., Brondani, V., and Muller-Lerch, F. (2008) Generation and functional analysis of zinc finger nucleases. Methods Mol Biol. 434, 277–290.

    PubMed  CAS  Google Scholar 

  41. Carroll, D., Morton, J.J., Beumer, K.J., and Segal, D.J. (2006) Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc. 1, 1329–1341.

    Article  PubMed  CAS  Google Scholar 

  42. Mani, M., Kandavelou, K., Dy, F.J., Durai, S., and Chandrasegaran, S. (2005) Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun. 335, 447–457.

    Article  PubMed  CAS  Google Scholar 

  43. Wright, D.A., Thibodeau-Beganny, S., Sander, J.D., Winfrey, R.J., Hirsh, A.S., Eichtinger, M., Fu, F., Porteus, M.H., Dobbs, D., Voytas, D.F., and Joung, J.K. (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc. 1, 1637–1652.

    Article  PubMed  Google Scholar 

  44. Kim, J.S., Kwon, Y.D., Kim, H., Ryu, E.H., and Hwang, M.S. (2007) Zinc finger domains and methods of identifying same. US Patent US2007087371.

    Google Scholar 

Download references

Acknowledgments

This chapter is based upon work supported by grant CA103651 from the National Cancer Institute, NIH (DJS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Segal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bhakta, M.S., Segal, D.J. (2010). The Generation of Zinc Finger Proteins by Modular Assembly. In: Mackay, J., Segal, D. (eds) Engineered Zinc Finger Proteins. Methods in Molecular Biology, vol 649. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-753-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-753-2_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-752-5

  • Online ISBN: 978-1-60761-753-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics