Skip to main content
Log in

Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Transcription activator-like effectors (TALEs) can be used as DNA-targeting modules by engineering their repeat domains to dictate user-selected sequence specificity. TALEs have been shown to function as site-specific transcriptional activators in a variety of cell types and organisms. TALE nucleases (TALENs), generated by fusing the FokI cleavage domain to TALE, have been used to create genomic double-strand breaks. The identity of the TALE repeat variable di-residues, their number, and their order dictate the DNA sequence specificity. Because TALE repeats are nearly identical, their assembly by cloning or even by synthesis is challenging and time consuming. Here, we report the development and use of a rapid and straightforward approach for the construction of designer TALE (dTALE) activators and nucleases with user-selected DNA target specificity. Using our plasmid set of 100 repeat modules, researchers can assemble repeat domains for any 14-nucleotide target sequence in one sequential restriction-ligation cloning step and in only 24 h. We generated several custom dTALEs and dTALENs with new target sequence specificities and validated their function by transient expression in tobacco leaves and in vitro DNA cleavage assays, respectively. Moreover, we developed a web tool, called idTALE, to facilitate the design of dTALENs and the identification of their genomic targets and potential off-targets in the genomes of several model species. Our dTALE repeat assembly approach along with the web tool idTALE will expedite genome-engineering applications in a variety of cell types and organisms including plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  PubMed  CAS  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  PubMed  CAS  Google Scholar 

  • Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401

    Article  PubMed  CAS  Google Scholar 

  • Bonas U, Stall RE, Staskawicz B (1989) Genetic and structural characterization of the avirulence gene AvrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218:127–136

    Article  PubMed  CAS  Google Scholar 

  • Bonas U, Conrads-Strauch J, Balbo I (1993) Resistance in tomato to Xanthomonas campestris pv vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Mol Gen Genet 238:261–269

    PubMed  CAS  Google Scholar 

  • Cai CQ, Doyon Y, Ainley WM, Miller JC, Dekelver RC, Moehle EA, Rock JM, Lee YL, Garrison R, Schulenberg L et al (2009) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 69:699–709

    Article  PubMed  CAS  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  PubMed  CAS  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  PubMed  CAS  Google Scholar 

  • Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  PubMed  CAS  Google Scholar 

  • Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33:5978–5990

    Article  PubMed  CAS  Google Scholar 

  • Fu F, Sander JD, Maeder M, Thibodeau-Beganny S, Joung JK, Dobbs D, Miller L, Voytas DF (2009) Zinc finger database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zinc-finger arrays. Nucleic Acids Res 37:D279–D283

    Article  PubMed  CAS  Google Scholar 

  • Geissler R, Scholze H, Hahn S, Streubel J, Bonas U, Behrens SE, Boch J (2011) Transcriptional activators of human genes with programmable DNA-specificity. PLoS One 6:e19509

    Article  PubMed  CAS  Google Scholar 

  • Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700

    Article  PubMed  CAS  Google Scholar 

  • Kandavelou K, Ramalingam S, London V, Mani M, Wu J, Alexeev V, Civin CI, Chandrasegaran S (2009) Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochem Biophys Res Commun 388:56–61

    Article  PubMed  CAS  Google Scholar 

  • Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (2011a) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372

    Article  PubMed  Google Scholar 

  • Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B (2011b) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39:6315–6325

    Article  PubMed  CAS  Google Scholar 

  • Mahfouz MM (2010) RNA-directed DNA methylation: mechanisms and functions. Plant Signal Behav 5:806–816

    Article  PubMed  CAS  Google Scholar 

  • Mahfouz MM, Li L (2011) TALE nucleases and next generation GM crops. GM Crop 2:1236–1256

    Google Scholar 

  • Mahfouz MM, Li L, Piatek M, Fang X, Mansour H, Bangarusamy D, Zhu J-K (2011a) Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol Biol. doi: 10.1007/s11103-011-9866-x

  • Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011b) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108:2623–2628

    Article  PubMed  CAS  Google Scholar 

  • Mani M, Smith J, Kandavelou K, Berg JM, Chandrasegaran S (2005) Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem Biophys Res Commun 334:1191–1197

    Article  PubMed  CAS  Google Scholar 

  • Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    Article  PubMed  CAS  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  PubMed  CAS  Google Scholar 

  • Morbitzer R, Romer P, Boch J, Lahaye T (2010) Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci USA 107:21617–21622

    Article  PubMed  CAS  Google Scholar 

  • Morbitzer R, Elsaesser J, Hausner J, Lahaye T (2011) Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 39:5790–5799

    Article  PubMed  CAS  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  PubMed  CAS  Google Scholar 

  • Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39(21):9283–9293

    Google Scholar 

  • Porteus M (2008) Design and testing of zinc finger nucleases for use in mammalian cells. Methods Mol Biol 435:47–61

    Article  PubMed  CAS  Google Scholar 

  • Pruett-Miller SM, Reading DW, Porter SN, Porteus MH (2009) Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet 5:e1000376

    Article  PubMed  Google Scholar 

  • Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI, Winfrey RJ, Sander JD, Fu F, Townsend JA et al (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–375

    Article  PubMed  CAS  Google Scholar 

  • Romer P, Recht S, Lahaye T (2009) A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proc Natl Acad Sci USA 106:20526–20531

    Article  PubMed  CAS  Google Scholar 

  • Romer P, Recht S, Strauss T, Elsaesser J, Schornack S, Boch J, Wang S, Lahaye T (2010) Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol 187:1048–1057

    Article  PubMed  Google Scholar 

  • Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D (2007) Zinc finger targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res 35:W599–W605

    Article  PubMed  Google Scholar 

  • Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D (2010) ZiFiT (zinc finger targeter): an updated zinc finger engineering tool. Nucleic Acids Res 38:W462–W468

    Article  PubMed  CAS  Google Scholar 

  • Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698

    Article  PubMed  CAS  Google Scholar 

  • Scholze H, Boch J (2011) TAL effectors are remote controls for gene activation. Curr Opin Microbiol 14:47–53

    Article  PubMed  CAS  Google Scholar 

  • Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L et al (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696

    Article  PubMed  CAS  Google Scholar 

  • Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of designer TAL effectors by golden gate cloning. PLoS One 6:e19722

    Article  PubMed  CAS  Google Scholar 

  • Weinthal D, Tovkach A, Zeevi V, Tzfira T (2010) Genome editing in plant cells by zinc finger nucleases. Trends Plant Sci 15(6):308–321

    Article  PubMed  CAS  Google Scholar 

  • Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X et al (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333:307

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107:12028–12033

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Thomas Lahaye for providing the Bs3::uidA binary construct. We also thank the members of the Genome Engineering Group at KAUST for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Kang Zhu or Magdy M. Mahfouz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Piatek, M.J., Atef, A. et al. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol 78, 407–416 (2012). https://doi.org/10.1007/s11103-012-9875-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9875-4

Keywords

Navigation