Skip to main content

Ultrasound Production, Emission, and Reception

  • Chapter
  • First Online:
Bat Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 54))

Abstract

All bats use acoustic signals for passive listening to ambient sounds and for intra- and inter-species communication. In addition, most bats have evolved an active sonar system that uses calls for exploring the environment acoustically. In the majority of bats, the larynx produces these echolocation pulses. Echolocation is absent in the family of Old World fruit bats except for one genus, Rousettus, which “reinvented” echolocation by producing sonar pulses using tongue clicks. This chapter first discusses how sounds are produced by the bat larynx by outlining its characteristic morphological features and detailing general sound production mechanisms, including non-linear features that play a key role in enabling echolocating bats to switch between echolocation and communication sounds. Subsequently, details are presented on the neuronal basis for sound production in echolocating bats by briefly discussing the neural innervation pattern of the larynx and how this affects spectral and temporal features of sounds, followed by a summary of the neuronal connection patterns and mechanisms within the brain stem as well as in higher-order brain structures. The chapter then explores the role of various forms of sensory feedback in sound production, such as auditory and somatosensory stimulation, and highlights how sound production is intertwined with other motor patterns, such as flying. The chapter also briefly explores the diversity in the shape of nose leafs and pinnae in different species of echolocating bats and the role that dynamic changes of such facial characteristics may play in echolocation. Finally, the tongue-click echolocation in Rousettus is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the taxonomic identity of “Pteronotus parnellii” has recently been challenged by the recognition of several cryptic species (Clare et al. 2013).

References

  • Behrend, O., & Schuller, G. (2000). The central acoustic tract and audio-vocal coupling in the horseshoe bat, Rhinolophus rouxi. European Journal of Neuroscience, 12, 4268–4280.

    Article  CAS  PubMed  Google Scholar 

  • Bell, G. P., & Fenton, M. B. (1984). The use of Doppler-shifted echoes as a flutter detection and clutter rejection system: The echolocation and feeding behavior of Hipposideros ruber (Chiroptera: Hipposideridae). Behavioral Ecology and Sociobiology, 15, 109–114.

    Article  Google Scholar 

  • Berke, G. S., & Long, J. L. (2010). Functions of the larynx and production of sounds. In S. M. Brudzynski (Ed.), Handbook of mammalian vocalization (pp. 419–426). Oxford: Academic Press.

    Chapter  Google Scholar 

  • Blauert, J. (1997). Spatial hearing. The psycho physics of human sound localization. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bontadina, F., Schofield, H., & Naef-Daenzer, B. (2002). Radio-tracking reveals that lesser horseshoe bats (Rhinolophus hipposideros) forage in woodland. Journal of Zoology, 258, 281–290.

    Article  Google Scholar 

  • Boughman, J. & Moss, C. (2003). Social sounds: Vocal learning and development of mammal and bird calls. In A. Simmons, A. N. Popper, & R. R. Fay (Eds.), Acoustic communication (pp. 138–213). Berlin: Springer.

    Chapter  Google Scholar 

  • Bowden, R. E. M., & Scheuer, J. L. (1961). Comparative studies of the nerve supply of the larynx in eutherian mammals. Proceedings of the Zoological Society London, 136, 325–330.

    Google Scholar 

  • Brinkløv, S., Kalko, E.K.V., & Surlykke, A (2009). Intense echolocation calls from two ‘whispering’ bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae). Journal of Experimental Biology, 212, 11–20.

    Article  PubMed  Google Scholar 

  • Brinkløv S., Jakobsen, L., & Ratcliffe, J.M. (2011). Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae). Journal of the Acoustical Society of America, 129, 427–435.

    Article  PubMed  Google Scholar 

  • Brown, C. H., & Cannito, M. P. (1995). Modes of vocal variation in Sykes’s monkey, Cercopithecus albogularis’ squeals. Journal of Comparative Psychology, 109, 398–415.

    Google Scholar 

  • Carter, R. T., & Adams, R. A. (2014). Ontogeny of the larynx and flight ability in Jamaican fruit bats (Phyllostomidae) with considerations for the evolution of echolocation. Anatomical Record, 297, 1270–1277.

    Article  Google Scholar 

  • Caspers, P., & Müller, R. (2015). Eigenbeam analysis of the diversity in bat biosonar beam patterns. Journal of the Acoustical Society of America, 137, 1081–1087.

    Article  PubMed  Google Scholar 

  • Chen, Q., Zhu, T., Jones, G., Zhang, J., & Sun, Y. (2013). First knockdown gene expression in bat (Hipposideros armiger) brain mediated by lentivirus. Molecular Biotechnology, 54, 564–571.

    Article  CAS  PubMed  Google Scholar 

  • Clare, E.L., Adams, A.M., Maya-Simoes, A.Z., Eger, J.L. Hebert, P.D.N., & Fenton, M.B. (2013). Diversification and reproductive isolation, cryptic species in the only New World high-duty cycle bat, Pteronotus parnellii. BMC Evolutionary Biology, 13, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Denny, S.P. (1976). The bat larynx. In R. Hinchcliffe & D. F. Harrison (Eds.), Scientific foundations of otolaryngology (pp. 346–370). London: Heinemann Med Books Ltd.

    Google Scholar 

  • Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Reviews of Neuroscience, 22, 567–631.

    Article  CAS  Google Scholar 

  • Durant, G. E. (1988). Laryngeal control of the duration and frequency of emitted sonar pulses in the echolocating bat, Eptesicus fuscus. PhD dissertation. Indiana University, Bloomington, IN.

    Google Scholar 

  • Eklöf, J. (2003). Vision in echolocating bats. PhD dissertation. University of Gothenburg, Sweden.

    Google Scholar 

  • Elemans, C. P. H., Mead, A. F., Jakobsen, L., & Ratcliffe, J. M. (2011). Superfast muscles set maximum call rate in echolocating bats. Science, 333, 1885–1888.

    Article  CAS  PubMed  Google Scholar 

  • Emde, G. V. D., & Schnitzler, H.-U. (1990). Classification of insects by echolocating greater horseshoe bats. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 167, 423–430.

    Article  Google Scholar 

  • Fattu, J. M., & Suthers, R. A. (1981). Subglottic pressure and the control of phonation by the echolocating bat, Eptesicus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 143, 465–475.

    Article  Google Scholar 

  • Fee, M. S., Shraiman, B., Pesaran B., & Mitra, P. P. (1998). The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature, 395, 67–71.

    Article  CAS  PubMed  Google Scholar 

  • Feng, L., Gao, L., Lu, H., & Müller, R. (2012). Noseleaf dynamics during pulse emission in horseshoe bats. PLoS ONE, 7, e34685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenzl, T., & Schuller, G. (2002). Periaqueductal gray and the region of the paralemniscal area have different functions in the control of vocalization in the neotropical bat, Phyllostomus discolor. European Journal of Neuroscience, 16, 1974–1986.

    Article  CAS  PubMed  Google Scholar 

  • Fenzl, T., & Schuller, G. (2005). Echolocation calls and communication calls are controlled differentially in the brainstem of the bat Phyllostomus discolor. BMC Biology, doi:10.1186/1741-7007-3-17.

    PubMed  PubMed Central  Google Scholar 

  • Fenzl, T., & Schuller, G. (2007). Dissimilarities in the vocal control over communication and echolocation calls in bats. Behavioral Brain Research, 182, 173–179.

    Article  Google Scholar 

  • Fitch, W.T., Neubauer, J., & Herzel, H. (2002). Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behavior, 63: 407–418.

    Article  Google Scholar 

  • Fletcher, N. H., & Thwaites, S. (1988). Obliquely truncated simple horns, idealized models for vertebrate pinnae. Acustica, 65, 194–204.

    Google Scholar 

  • Frey, R., & Gebler, A. (2010). Mechanisms and evolution of roaring-like vocalizations in mammals. In S. M. Brudzynski (Ed.), Handbook of mammalian vocalization (pp. 439–450). New York: Academic Press.

    Chapter  Google Scholar 

  • Gaioni, S. J., Suga, N., & Riquimaroux, H. (1988) Effects of bilateral ablation of the auditory cortex and/or cingulate cortex on the biosonar behavior of the mustached bat. Abstract, Annual Meeting, Society for Neuroscience, Toronto, Canada.

    Google Scholar 

  • Gao, L., & Müller, R. (2014). Gao and Müller reply. Physical Review Letters, 112, 109401.

    Article  PubMed  CAS  Google Scholar 

  • Gao, L., Balakrishnan, S., He, W., Yan, Z., & Müller, R. (2011). Ear deformations give bats a physical mechanism for fast adaptation of ultrasonic beam patterns. Physical Review Letters, 107, 214301.

    Article  PubMed  CAS  Google Scholar 

  • Ghose, K., & Moss, C. F. (2003). The sonar beam pattern of a flying bat as it tracks tethered insects. Journal of the Acoustical Society of America, 114, 1120–1131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghose, K., & Moss, C. F. (2006). Steering by hearing: A bat’s acoustic gaze is linked to its flight motor output by a delayed, adaptive linear law. Journal of Neuroscience, 26, 1704–1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghose, K., Moss, C. F., & Horiuchi, T. K. (2007). Flying big brown bats emit a beam with two lobes in the vertical plane. Journal of the Acoustical Society of America, 122, 3717–3724.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gooler, D. M., & O’Neill, W. E. (1987). Topographic representation of vocal frequency demonstrated by microstimulation of anterior cingulate cortex in the echolocating bat, Pteronotus parnelli parnelli. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 161, 283–294.

    Article  CAS  Google Scholar 

  • Grinnell, A. D. (1989). Sensory-motor control, listening to the voice within. Nature, 341, 488–489.

    Article  CAS  PubMed  Google Scholar 

  • Grinnell, A. D., & Hagiwara, S. (1972). Studies of auditory neurophysiology in non-echolocating bats and adaptations for echolocation in one genus, Rousettus. Zeitschrift für Vergleichende Physiologie, 76, 82–96.

    Article  Google Scholar 

  • Gruber-Dujardin, E. (2010). Role of periaqueductal gray in expressing vocalization. In S. M. Brudzynski (Ed.), Handbook of mammalian vocalization (pp. 313–327). New York: Academic Press.

    Chapter  Google Scholar 

  • Gunnell G. F., & Simmons, N. B. (2005). Fossil evidence and the origin of bats. Journal of Mammalian Evolution, 12, 209–246.

    Article  Google Scholar 

  • Hage, S. R. (2010a). Localization of the central pattern generator for vocalization. In S. M. Brudzynski (Ed.), Handbook of mammalian vocalization (pp. 329–338). New York: Academic Press.

    Google Scholar 

  • Hage, S. R. (2010b). Neuronal networks involved in the generation of vocalization. In S. M. Brudzynski (Ed.), Handbook of mammalian vocalization (pp. 339–349). New York: Academic Press.

    Google Scholar 

  • Hage, S. R., & Jürgens, U. (2006). Localization of a vocal pattern generator in the pontine brainstem of the squirrel monkey. European Journal of Neuroscience, 23, 840–844.

    Article  PubMed  Google Scholar 

  • Hage, S. R., Jürgens, U., & Ehret, G. (2006). Audio-vocal interaction in the pontine brainstem during self-initiated vocalization in the squirrel monkey. European Journal of Neuroscience, 23, 3297–3307.

    Article  PubMed  Google Scholar 

  • Hage, S. R., Jiang, T., Berquist, S., Feng, J., & Metzner, W. (2013). Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. Proceedings of the National Academy of Sciences of the USA, 110, 4063–4068.

    Google Scholar 

  • Hage, S. R., Jiang, T., Berquist, S., Feng, J., & Metzner, W. (2014). Ambient noise causes independent changes in distinct spectrotemporal features of echolocation calls in horseshoe bats. Journl of Experimental Biology, doi:10.1242/jeb.102855.

    Google Scholar 

  • Hannig, S., & Jürgens, U. (2005). Projections of the ventrolateral pontine vocalization area in the squirrel monkey. Experimental Brain Research, 169, 92–105.

    Article  PubMed  CAS  Google Scholar 

  • Hartley, D. J. (1992). Stabilization of perceived echo amplitudes in echolocating bats. II. The acoustic behavior of the big brown bat, Eptesicus fuscus, when tracking moving prey. Journal of the Acoustical Society of America, 91, 1133–1149.

    Article  CAS  PubMed  Google Scholar 

  • Hartley, D. J., & Suthers, R. A. (1988). The acoustics of the vocal tract in the horseshoe bat, Rhinolophus hildebrandti. Journal of the Acoustical Society of America, 84, 1201–1213.

    Article  Google Scholar 

  • He, W., Gupta, A., Pedersen, S., Simmons, J. & Müller, R. (2015). Lancet dynamics in greater horseshoe bats, Rhinolophus ferrumequinum. PLoS ONE, 10(4), e0121700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hiryu, S., Kastsura, K., Nagato, T., Yamazaki, H., Lin, L. K., Watanabe, Y., & Riquimaroux, H. (2006). Intra-individual variation in the vocalized frequency of the Taiwanese leaf-nosed bat, Hipposideros terasensis, influenced by conspecific colony members. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 192, 807–815.

    Article  PubMed  Google Scholar 

  • Holland, R. A., & Waters, D. A. (2005). Echolocation signals and pinnae movement in the fruitbat Rousettus aegyptiacus. Acta Chiropterologica, 7, 83–90.

    Article  Google Scholar 

  • Holland, R. A., Waters, D. A., & Rayner, J. M. V. (2004). Echolocation signal structure in the megachiropteran bat Rousettus aegyptiacus. Journal of Experimental Biology, 207, 4361–4369.

    Article  PubMed  Google Scholar 

  • Holstege, G. (1989). Anatomical study of the final common pathway for vocalization in the cat. Journal of Comparative Neurology, 284, 242–252.

    Article  CAS  PubMed  Google Scholar 

  • Huffman, R. F., & Henson, O. W., Jr. (1993a). Labile cochlear tuning in the mustached bat. I. Concomitant shifts in biosonar emission frequency. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 171, 725–734.

    Google Scholar 

  • Huffman, R. F., & Henson, O. W., Jr. (1993b). Labile cochlear tuning in the mustached bat. II. Concomitant shifts in neural tuning. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 171, 735–748.

    Google Scholar 

  • Janik, V. M., & Slater, P. J. B. (1997). Vocal learning in mammals. In P. J. B. Slater, J. S. Rosenblatt, C. T. Snowdon & M. Milinski (Eds.), Advances in the Study of Behavior. Vol. 26 (pp. 59–99). San Diego and London: Academic Press.

    Google Scholar 

  • Jarvis, E. D. (2004). Learned birdsong and the neurobiology of human language. Annals of the New York Academy of Sciences, 1016, 749–777.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson, D. H., & Dugeon, D. E. (1993). Array signal processing, concepts and techniques. New Jersey: Prentice Hall PTR.

    Google Scholar 

  • Jolliffe, T. (2002). Principal component analysis. New York: Springer.

    Google Scholar 

  • Jürgens, U. (2002). Neural pathways underlying vocal control. Neuroscience & Biobehavioral Reviews, 26, 235–258.

    Article  Google Scholar 

  • Jürgens, U. (2009). The neural control of vocalization in mammals: A review. Journal of Voice, 23, 1–10.

    Article  PubMed  Google Scholar 

  • Jürgens, U., & Schriever, S. (1991). Respiratory muscle activity during vocalization in the squirrel monkey. Folia Primatologica, 56, 121–132.

    Article  Google Scholar 

  • Kanwal, J. S., & Ehret, G. (2006). Behaviour and neurodynamics for auditory communication. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Kanwal, J. S., Matsumura, S., Ohlemiller, K., & Suga, N. (1994). Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats. Journal of the Acoustical Society of America, 96, 1229–1254.

    Article  CAS  PubMed  Google Scholar 

  • Kitamura, S., Nagase, Y., Chen, K., & Shigenaga, Y. (1993). Nucleus ambiguus of the rabbit: Cytoarchitectural subdivision and myotopical and neurotopic representations. Anatomical Records, 237, 109–123.

    Article  CAS  Google Scholar 

  • Knörnschild, M., Nagy, M., Metz, M., Mayer, F., & von Helversen, O. (2010). Complex vocal imitation during ontogeny in a bat. Biology Letters, 6, 156–159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayasi, K., Hage, S., Berquist, S., Feng, J., Zhang, S., & Metzner, W. (2012). Behavioural and neurobiological implications of linear and non-linear features in larynx phonations of horseshoe bats. Nature Communications, 3, 1184

    Google Scholar 

  • Kober, R., & Schnitzler, H.-U. (1990). Information in sonar echoes of fluttering insects available for echolocating bats. Journal of the Acoustical Society of America, 87, 882896.

    Google Scholar 

  • Kobler, J. B. (1983). The nucleus ambiguus of the bat, Pteronotus parnellii: Peripheral targets and central inputs. PhD dissertation. University of North Carolina, Chapel Hill, NC.

    Google Scholar 

  • Kobler, J. B., Isbey, S. F., & Casseday, J. H. (1987). Auditory pathways to the frontal cortex of the mustache bat, Pteronotus parnellii. Science, 236, 824–826.

    Article  CAS  PubMed  Google Scholar 

  • Konstantinov, A. I., Makarov, A. K, Movchan, E. V. Sokolov, B. V., & Goriniskii, I. A. (1988). Sensory system for echolocation in horseshoe bats (in Russian). Moscow: Russian Academy of Sciences.

    Google Scholar 

  • Kulzer, E. (1958). Untersuchungen über die Biologie von Flughunden der Gattung Rousettus. Zeitschrift für Morphologie und Ökologie der Tiere, 47, 374–402.

    Article  Google Scholar 

  • Lancaster, W. C., & Speakman, J. R. (2001). Variations in respiratory muscle activity during echolocation when stationary in three species of bat (Microchiroptera, Vespertilionidae). Journal of Experimental Biology, 204, 4185–4197.

    CAS  PubMed  Google Scholar 

  • Lancaster, W. C., Henson, O. W., Jr., & Keating, A. W. (1995). Respiratory muscle activity in relation to vocalization in flying bats. Journal of Experimental Biology, 198, 175–191.

    CAS  PubMed  Google Scholar 

  • Li, G., Wang, J., Rossiter, S.J., Jones, G., & Zhang, S. (2007). Accelerated FoxP2 evolution in echolocating bats. PLoS ONE, 2, e900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Y., Feng, J., & Metzner, W. (2013). Different auditory feedback control for echolocation and communication in horseshoe bats. PLoS ONE, 8(4), e62710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, J. & Müller, R. (2011). A method for characterizing the biodiversity in bat pinnae as a basis for engineering analysis. Bioinspired Biomimetics, 6, 026008.

    Article  Google Scholar 

  • Ma, J., Kobayasi, K., Zhang, S., & Metzner, W. (2006). Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 192, 535–550.

    Article  PubMed  Google Scholar 

  • Mergell, P., Fitch, W. T. & Herzel, H. (1999). Modeling the role of nonhuman vocal membranes in phonation. Journal of the Acoustical Society of America, 105, 2020–2028.

    Article  CAS  PubMed  Google Scholar 

  • Metzner, W. (1989). A possible neuronal basis for Doppler-shift compensation in echo-locating horseshoe bats. Nature, 341, 529–532.

    Article  CAS  PubMed  Google Scholar 

  • Metzner, W. (1993). An audio-vocal interface in echolocating horseshoe bats. Journal of Neuroscience, 13, 1899–1915.

    CAS  PubMed  Google Scholar 

  • Metzner, W. (1996). Anatomical basis for audio-vocal integration in echolocating horseshoe bats. Journal of Comparative Neurology, 368, 252–269.

    Article  CAS  PubMed  Google Scholar 

  • Metzner, W. (2008). Bat bioacoustics. In D. Havelock, S. Kuwano, & M. Vorländer (Eds.), Handbook of signal processing in acoustics (pp. 1835–1849). New York: Springer.

    Chapter  Google Scholar 

  • Metzner, W., & Schuller, G. (2010). Vocal control in echolocating bats. In S. M. Brudzynski (Ed.), Handbook of mammalian vocalization (pp. 403–416). New York: Academic Press.

    Chapter  Google Scholar 

  • Metzner, W., Zhang, S. Y., & Smotherman, M. S. (2002). Doppler-shift compensation behavior in horseshoe bats revisited: Auditory feedback controls both a decrease and an increase in call frequency. Journal of Experimental Biology, 205, 1607–1616.

    PubMed  Google Scholar 

  • Meymand, S. Z., Pannala, M., & Müller, R. (2013). Characterization of the timevariant behavior of a biomimetic beamforming baffle. Journal of the Acoustical Society of America, 133, 1141–1150.

    Article  PubMed  Google Scholar 

  • Möhres, F. P. (1953). Über die Ultraschallorientierung der Hufeisennasen (Chiroptera-Rhinolophinae). Zeitschrift für Vergleichende Physiologie, 34, 547–588.

    Article  Google Scholar 

  • Möhres, F. P. & Kulzer, E. (1956). Über die Orientierung der Flughunde (Chiroptera-Pteropodidae). Zeitschrift für Vergleichende Physiologie, 38, 1–29.

    Article  Google Scholar 

  • Mogdans, J., Ostwald, J. & Schnitzler, H.-U. (1988). The role of pinna movement for the localization of vertical and horizontal wire obstacles in the greater horseshoe bat, Rhinolophus ferrumequinum. Journal of the Acoustical Society of America, 84, 1676–1679.

    Article  Google Scholar 

  • Mogensen, F., & Møhl, B. (1979). Sound radiation patterns in the frequency domain of cries from a Vespertilionid bat. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 134, 165–171.

    Article  Google Scholar 

  • Moss, C. F., & Surlykke, A. (2010). Probing the natural scene by echolocation in bats. Frontiers in Behavioral Neuroscience, 4, 33.

    PubMed  PubMed Central  Google Scholar 

  • Motamedi, M., & Müller, R. (2014). Characterization of the biodiversity in bat biosonar beam patterns with spherical harmonics power spectra. Journal of the Acoustical Society of America, 135, 3613. http://dx.doi.org/10.1121/1.4874595.

    Article  PubMed  Google Scholar 

  • Movchan, E. V. (1984). Role of auditory centers in echolocation tracking of a moving target by greater horseshoe bats. Neirofiziologiya, 16, 737–745.

    CAS  Google Scholar 

  • Müller, R., Pannala, M., Reddy, O. P. K., & Meymand, S. Z. (2012). Design of a dynamic sensor inspired by bat ears. Smart Materials and Structures, 21, 094025.

    Article  Google Scholar 

  • Müller, R., Feng, L., & Pannala, M. (2013). Bat biosonar as an inspiration for dynamic sensing. Proceedings of the Society of Photo-optical Instrumentation Engineers, 8686, doi:10.1117/12.2011274

  • Neuweiler, G. (1962). Bau und Leistung des Flughundauges (Pteropus giganteus). Zeitschrift für Vergleichende Physiologie, 46, 13–56.

    Article  Google Scholar 

  • Neuweiler, G. (2000). The biology of bats. New York: Oxford University Press.

    Google Scholar 

  • Neuweiler, G., Metzner, W., Heilmann, U., Rübsamen, R., Eckrich, M., & Costa, H. H. (1987). Foraging behaviour and echolocation in the rufous horseshoe bats, Rhinolophus rouxi, of Sri Lanka. Behavioral Ecology and Sociobiology, 20, 53–67.

    Article  Google Scholar 

  • Novick, A. (1963). Orientation in neotropical bats. II. Phyllostomatidae and Desmodontidea. Journal of Mammalogy, 44, 44–56.

    Google Scholar 

  • Novick, A., & Griffin, D. R. (1961). Laryngeal mechanisms in bats for the production of orientation sounds. Journal of Experimental Zoology, 148, 125–145.

    Article  CAS  PubMed  Google Scholar 

  • Pannala, M., Meymand, S. Z., & Müller, R. (2013). Interplay of static and dynamic features in biomimetic smart ears. Bioinspired Biomimetics, 8, 026008. doi:10.1088/1748-3182/8/4/049501

    Article  Google Scholar 

  • Pillat, J., & Schuller, G. (1998). Audiovocal behavior of Doppler-shift compensation in the horseshoe bat survives bilateral lesion of the paralemniscal tegmental area. Experimental Brain Research, 119, 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Pye, J. D. (1967). Synthesizing the waveforms of bats’ pulses. In R-G. Busnel (Ed.), Animal sonar systems, biology and bionics. Volume I (pp. 43–64). Jouy-en-Josas: Laboratory of Physiological Acoustics, Institut National de la Recherche Agronomique – Centre National de la Recherche Scientific.

    Google Scholar 

  • Pye, J. D. (1980). Echolocation signals and echoes in air. In R.-G. Busnel & J. F. Fish (Eds.), Animal sonar systems (pp. 309–333). New York: Plenum Press.

    Chapter  Google Scholar 

  • Pye, J. D., & Roberts, L. H. (1970). Ear movements in a hipposiderid bat. Nature, 225, 285–286.

    Article  Google Scholar 

  • Raghuram, H., Gopukumar, N., & Sripathi, K. (2007). Presence of single as well double clicks in the echolocation signals of a fruitbat, Rousettus leschenaulti. Folia Zoologica, 56, 33–38.

    Google Scholar 

  • Raghuram, H., Thangadurai, C., Gopukumar, N., Nathar, K., & Sripathi, K. (2009). The role of olfaction and vision in the foraging behavior of an echolocating megachiropteran fruit bat, Rousettus leschenaulti. Mammalian Biology, 74, 9–14.

    Google Scholar 

  • Ratcliffe, J. M. (2009) Predator-prey interaction in an auditory world. In R. Dukas & J. M. Ratcliffe (Eds.), Cognitive ecology II (pp. 201–225). Chicago: University of Chicago Press.

    Google Scholar 

  • Ratcliffe, J. M., Elemans, C. P. H., Jakobsen, L., & Surlykke, A. (2013). How the bat got its buzz. Biology Letters, 9, 20121031.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reger, J. F. (1978). A comparative study on the fine structure of tongue and cricothyroid muscle of the bat, Myotis grisescens, as revealed by thin section and freeze-fracture techniques. Journal of Ultrastructural Research, 63, 275–286.

    Article  CAS  Google Scholar 

  • Revel, J. P. (1962). The sarcoplasmic reticulum of the bat cricothyroid muscle. Journal of Cell Biology, 12, 571–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, L. H. (1973). Cavity resonances in the production of orientation cries. Periodicum Biologorum, 75, 27–32.

    Google Scholar 

  • Roberts, L. H. (1975). Confirmation of the echolocation pulse production mechanism of Rousettus. Journal of Mammalogy, 56, 218–220.

    Article  CAS  PubMed  Google Scholar 

  • Rübsamen, R., & Schuller, G. (1981). Laryngeal nerve activity during pulse emission in the CF-FM bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 143, 323–327.

    Article  Google Scholar 

  • Rübsamen. R., & Schweizer, H. (1986). Control of echolocation pulses by neurons of the nucleus ambiguus in the rufous horseshoe bat, Rhinolophus rouxi. II. Afferent and efferent connections of the motor nucleus of the laryngeal nerves. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 159, 689–699.

    Google Scholar 

  • Schneider, H., & Möhres, F. P. (1960). Die Ohrbewegungen der Hufeisenfledermäuse (Chiroptera, Rhinolophidae) und der Mechanismus des Bildhörens. Zeitschrift für Vergleichende Physiologie, 44, 1–40.

    Article  Google Scholar 

  • Schnitzler, H.-U. (1968). Die Ultraschallortungslaute der Hufeisennasen-Fledermäuse (Chiroptera, Rhinolophidae) in verschiedenen Orientierungssituationen. Zeitschrift für Vergleichende Physiologie, 57, 376–408.

    Article  Google Scholar 

  • Schnitzler, H.-U., & Denzinger, A. (2011). Auditory fovea and Doppler shift compensation, adaptations for flutter detection in echolocating bats using CF-FM signals. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 541–559.

    Article  PubMed  Google Scholar 

  • Schnitzler, H.-U., & Kalko, E. K. V. (2001). Echolocation by insect-eating bats. Bioscience, 51, 557–569.

    Article  Google Scholar 

  • Schuller, G. (1977). Echo delay and overlap with emitted orientation sounds and Doppler-shift compensation in the bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 4, 103–114.

    Article  Google Scholar 

  • Schuller, G. (1986). Influence of echolocation pulse rate on Doppler-shift compensation control system in the greater horseshoe bat. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 158, 239–246.

    Article  Google Scholar 

  • Schuller G., & Moss, C. F. (2004). Vocal control and acoustically guided behavior in bats. In J. A. Thomas, C. F. Moss, & M. Vater (Eds.), Echolocation in bats and dolphins (pp. 3 –17). Chicago and London: The University of Chicago Press.

    Google Scholar 

  • Schuller, G., & Pollak, G. D. (1979). Disproportionate frequency representation in the inferior colliculus of Doppler-compensating greater horseshoe bats, Rhinolophus ferrumequinum. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 132, 47–54.

    Article  Google Scholar 

  • Schuller, G., & Rübsamen, R. (1981). Laryngeal nerve activity during pulse emission in the CF-FM bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 143, 317–321.

    Article  Google Scholar 

  • Schuller, G., & Radtke-Schuller, S. (1990). Neural control of vocalization in bats: Mapping of brainstem areas with electrical microstimulation. Experimental Brain Research, 79, 192–206.

    Article  CAS  PubMed  Google Scholar 

  • Schuller, G., & Suga, N. (1976). Laryngeal mechanisms for the emission of CF-FM sounds in the Doppler-shift compensating bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 107, 253–262.

    Article  Google Scholar 

  • Schuller, G., Fischer, S., & Schweizer, H. (1997). Significance of the paralemniscal tegmental area for audio-motor control in the moustached bat, Pteronotus p. parnellii: The afferent off efferent connections of the paralemniscal area. European Journal of Neuroscience, 9, 342–355.

    Google Scholar 

  • Schwartz, C., & Smotherman, M. S. (2011). Mapping vocalization-related immediate early gene expression in echolocating bats. Behavioral Brain Research, 224, 358–368.

    Article  Google Scholar 

  • Schweizer, H., Rübsamen, R., & Rühle, C. (1981). Localization of brain stem motoneurons innervating the laryngeal muscles in the rufous horseshoe bat, Rhinolophus rouxi. Brain Research, 230, 41–50.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, J. A. (1974). Response of the Doppler echolocation system of the bat, Rhinolophus ferrumequinum. Journal of the Acoustical Society of America, 56, 672–682.

    Google Scholar 

  • Simmons, J. A., & Stein, R. A. (1980). Acoustic imaging in bat sonar, echolocation signals and the evolution of echolocation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 135, 61–84.

    Article  Google Scholar 

  • Simmons, N. B. (2005). Mammal species of the World: a taxonomic and geographic reference. Vol. 1. 3rd Ed. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Smotherman, M. S. (2007). Sensory feedback control of mammalian vocalization. Behavioral Brain Research, 182, 315–326.

    Article  Google Scholar 

  • Smotherman, M., & Metzner, W. (2005). Auditory-feedback control of temporal call patterns in echolocating horseshoe bats. Journal of Neurophysiology, 93, 1295–1303.

    Article  PubMed  Google Scholar 

  • Smotherman, M., Zhang, S., & Metzner, W. (2003). A neural basis for auditory feedback control of vocal pitch. Journal of Neuroscience, 23, 1464–1477.

    CAS  PubMed  Google Scholar 

  • Smotherman, M., Kobayasi, K., Ma, J., Zhang, S., & Metzner, W. (2006). A mechanism for vocal-respiratory coupling in the mammalian parabrachial nucleus. Journal of Neuroscience, 26, 4860–4869.

    Article  CAS  PubMed  Google Scholar 

  • Smotherman, M. S., Schwartz, C., & Metzner, W. (2010). Vocal-respiratory interactions in the parabrachial nucleus. In S. M. Brudzynski (Ed.), Handbook of mammalian vocalization (pp. 383–392). New York: Academic Press.

    Chapter  Google Scholar 

  • Speakman, J. R., & Racey, P. A. (1991). No cost of echolocation for bats in flight. Nature, 350, 421–423.

    Article  CAS  PubMed  Google Scholar 

  • Speakman, J. R., Anderson, M. E., & Racey, P. A..(1989). The energy cost of echolocation in pipistrelle bats (Pipistrellus pipistrellus). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 165, 679–685.

    Article  Google Scholar 

  • Suga, N., Schlegel, P., Shimozawa, T., & Simmons, J. (1973). Orientation sounds evoked from echolocating bats by electrical stimulation of the brain. Journal of the Acoustical Society of America, 54, 793–797.

    Article  CAS  PubMed  Google Scholar 

  • Surlykke, A., & Kalko, E.K.V. (2008). Echolocating bats cry out loud to detect their prey. PLoS ONE, 3, e2036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suthers, R. A. (2004). Vocal mechanisms in birds and bats: A comparative view. Annals of the Brazilian Academy of Sciences, 76, 247–252.

    Article  Google Scholar 

  • Suthers, R. A., & Fattu, J. M. (1973). Mechanism of sound production in echolocating bats. American Zoologist, 13, 1215–1226.

    Article  Google Scholar 

  • Suthers, R. A., & Fattu, J.M. (1982). Selective laryngeal neurotomy and the control of phonation by the echolocating bat, Eptesicus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 145, 529–537.

    Article  Google Scholar 

  • Suthers, R. A., Thomas, S. P., & Suthers, B. J. (1972). Respiration, wing-beat and ultrasonic pulse emission in an echolocating bat. Journal of Experimental Biology, 56, 37–48.

    Google Scholar 

  • Suthers, R. A., Hartley, D. J., & Wenstrup, J. J. (1988). The acoustic role of tracheal chambers and nasal cavities in the production of sonar pulses by the horseshoe bat, Rhinolophus hildebrandti. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 162, 799–813.

    Article  CAS  Google Scholar 

  • Suthers, R. A., Narins, P. M., Lin, W. Y., Schnitzler, H.-U., Denzinger, A., Xu, C. H., & Feng, A. S. (2006). Voices of the dead: Complex nonlinear vocal signals from the larynx of an ultrasonic frog. Journal of Experimental Biology, 209, 4984–4993.

    Article  PubMed  Google Scholar 

  • Thomas, J. A., Moss, C. F., & Vater, M., Eds. (2004). Echolocation in bats and dolphins. Chicago: University of Chicago Press.

    Google Scholar 

  • Tressler, J., & Smotherman, M. S. (2011). Regulation of bat echolocation pulse acoustics by striatal dopamine. Journal of Experimental Biology, 214, 3238–3247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderelst, D., Reijniers, J., & Peremans, H. (2014). Comment on “Ear deformations give bats a physical mechanism for fast adaptation of ultrasonic beam patterns”. Physical Review Letters, 112, 079401.

    Article  PubMed  CAS  Google Scholar 

  • von Herbert, H. (1985). Echoortungsverhalten des Flughundes Rousettus aegyptiacus. Zeitschrift für Säugetierkunde, 50, 141–152.

    Google Scholar 

  • Wong, J. G., & Waters, D. A. (2001). The synchronisation of signal emission with wingbeat during the approach phase in soprano pipistrelles (Pipistrellus pygmaeus). Journal of Experimental Biology, 204, 575–583.

    CAS  PubMed  Google Scholar 

  • Yovel, Y., Falk, B., Moss, C. F., & Ulanovsky, N. (2010). Optimal localization by pointing off axis. Science, 327, 701–704.

    Article  CAS  PubMed  Google Scholar 

  • Yovel, Y., Geva-Sagiv, M., & Ulanovsky, N. (2011a). Click-based echolocation in bats, not so primitive after all. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 515–530.

    Google Scholar 

  • Yovel, Y., Falk, B., Moss, C. F., & Ulanovsky, N. (2011b). Active control of acoustic field-of-view in a biosonar system. PLoS Biology, 9, e1001150.

    Google Scholar 

  • Zhuang, Q., & Müller, R. (2006). Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam. Physical Review Letters, 97, 218701.

    Article  PubMed  CAS  Google Scholar 

  • Zhuang, Q., & Müller, R. (2007). Numerical study of the effect of the noseleaf on biosonar beamforming in a horseshoe bat. Physical Reviews E, 76, 051902.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Metzner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Metzner, W., Müller, R. (2016). Ultrasound Production, Emission, and Reception. In: Fenton, M., Grinnell, A., Popper, A., Fay, R. (eds) Bat Bioacoustics. Springer Handbook of Auditory Research, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3527-7_3

Download citation

Publish with us

Policies and ethics