Skip to main content

A Comparison of In Vitro and In Vivo Asexual Embryogenesis

  • Protocol
In Vitro Embryogenesis in Higher Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1359))

Abstract

In plants, embryogenesis generally occurs through the sexual process of double fertilization, which involves a haploid sperm cell fusing with a haploid egg cell to ultimately give rise to a diploid embryo. Embryogenesis can also occur asexually in the absence of fertilization, both in vitro and in vivo. Somatic or gametic cells are able to differentiate into embryos in vitro following the application of plant growth regulators or stress treatments. Asexual embryogenesis also occurs naturally in some plant species in vivo, from either ovule cells as part of a process defined as apomixis, or from somatic leaf tissue in other species. In both in vitro and in vivo asexual embryogenesis, the embryo precursor cells must attain an embryogenic fate without the act of fertilization. This review compares the processes of in vitro and in vivo asexual embryogenesis including what is known regarding the genetic and epigenetic regulation of each process, and considers how the precursor cells are able to change fate and adopt an embryogenic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Drews G, Koltunow AM (2011) The female gametophyte. Arabidopsis Book 9:e0155

    Google Scholar 

  2. Twell D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod 24:149–160

    Article  PubMed  Google Scholar 

  3. Capron A, Chatfield S, Provart N, Berleth T (2009) Embryogenesis: pattern formation from a single cell. Arabidopsis Book 7:e0126

    Google Scholar 

  4. Berger F, Hamamura Y, Ingouff M, Higashiyama T (2008) Double fertilization: caught in the act. Trends Plant Sci 13:437–443

    Article  CAS  PubMed  Google Scholar 

  5. Taylor TN, Taylor EL, Krings M (2008) Paleobotany. The biology and evolution of fossil plants, 2nd edn. Academic Press, New York

    Google Scholar 

  6. Radoeva T, Weijers D (2014) A roadmap to embryo identity in plants. Trends Plant Sci 19(11):709–716

    Article  CAS  PubMed  Google Scholar 

  7. Hand ML, Koltunow A (2014) The genetic control of apomixis: asexual seed formation. Genetics 197:441–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Barcaccia G, Albertini E (2013) Apomixis in plant reproduction: a novel perspective on an old dilemma. Plant Reprod 26:159–179

    Article  PubMed Central  PubMed  Google Scholar 

  9. Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61:51–94

    Article  Google Scholar 

  10. Koltunow AM, Ozias-Akins P, Siddiqi I (2013) Apomixis. In: Becraft PW (ed) Seed genomics. Wiley, New York, pp 83–110

    Chapter  Google Scholar 

  11. Vijverberg K, Milanovic-Ivanovic S, Bakx-Schotman T, van Dijk PJ (2010) Genetic fine-mapping of DIPLOSPOROUS in Taraxacum (dandelion; Asteraceae) indicates a duplicated DIP-gene. BMC Plant Biol 10

    Google Scholar 

  12. Ortiz JPA, Quarin CL, Pessino SC, Acuña C, Martínez EJ, Espinoza F et al (2013) Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. Ann Bot 112:767–787

    Article  PubMed Central  PubMed  Google Scholar 

  13. Koltunow AMG, Johnson SD, Rodrigues JCM, Okada T, Hu Y, Tsuchiya T et al (2011) Sexual reproduction is the default mode in apomictic Hieracium subgenus Pilosella, in which two dominant loci function to enable apomixis. Plant J 66:890–902

    Article  CAS  PubMed  Google Scholar 

  14. Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE, Hanna WW et al (2004) High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. Plant Physiol 134:1733–1741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wakana A, Uemoto S (1988) Adventive embryogenesis in Citrus (Rutaceae). II. Postfertilization development. Am J Bot 75:1033–1047

    Article  Google Scholar 

  16. Wakana A, Uemoto S (1987) Adventive embryogenesis in Citrus. I. The occurrence of adventive embryos without pollination or fertilization. Am J Bot 74:517–530

    Article  Google Scholar 

  17. Koltunow AM, Soltys K, Nito N, McClure S (1995) Anther, ovule, seed, and nucellar embryo development in Citrus sinensis cv. Valencia. Can J Bot 73:1567–1582

    Article  Google Scholar 

  18. Koltunow AM (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:1425–1437

    Article  PubMed Central  PubMed  Google Scholar 

  19. Koltunow AM, Hidaka T, Robinson SP (1996) Polyembryony in Citrus: accumulation of seed storage proteins in seeds and in embryos cultured in vitro. Plant Physiol 110:599–609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Matzk F (1996) The Salmon system of wheat: a suitable model for apomixis research. Hereditas 125:299–301

    Article  Google Scholar 

  21. Tsunewaki K, Mukai Y (1990) Wheat haploids through the Salmon method. In: Bajaj YPS (ed) Wheat, biotechnology in agriculture and forestry 13. Springer, Berlin/Heidelberg/New York, pp 460–478

    Google Scholar 

  22. Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462

    Google Scholar 

  23. Garcês HMP, Champagne CEM, Townsley BT, Park S, Malhó R, Pedroso MC et al (2007) Evolution of asexual reproduction in leaves of the genus Kalanchoë. Proc Natl Acad Sci U S A 104:15578–15583

    Article  PubMed Central  PubMed  Google Scholar 

  24. Batygina TB, Bragina EA, Titova GE (1996) Morphogenesis of propagules in viviparous species Bryophyllum daigremontianum and B. calycinum. Acta Soc Bot Pol 65:127–133

    Article  Google Scholar 

  25. Yarbrough JA (1932) Anatomical and developmental studies of the foliar embryos of Bryophyllum calycinum. Am J Bot 19:443–453

    Article  Google Scholar 

  26. Sibi ML, Kobaissi A, Shekafandeh A (2001) Green haploid plants from unpollinated ovary culture in tetraploid wheat (Triticum durum Defs.). Euphytica 122:351–359

    Article  Google Scholar 

  27. Gémes-Juhász A, Balogh P, Ferenczy A, Kristóf Z (2002) Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Rep 21:105–111

    Article  CAS  Google Scholar 

  28. Islam SMS, Tuteja N (2012) Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species. Plant Sci 182:134–144

    Article  CAS  PubMed  Google Scholar 

  29. Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375

    Article  CAS  PubMed  Google Scholar 

  30. Germanà MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857

    Article  PubMed  CAS  Google Scholar 

  31. Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electronic Journal of Biotechnology 13(1)

    Google Scholar 

  32. Mordhorst AP, Hartog MV, El Tamer MK, Laux T, de Vries SC (2002) Somatic embryogenesis from Arabidopsis shoot apical meristem mutants. Planta 214:829–836

    Article  CAS  PubMed  Google Scholar 

  33. Toonen MAJ, Hendriks T, Schmidt EDL, Verhoeven HA, Vankammen A, Devries SC (1994) Description of somatic-smbryo-forming single cells in carrot suspension-cultures employing video cell tracking. Planta 194:565–572

    Article  CAS  Google Scholar 

  34. Rademacher EH, Lokerse AS, Schlereth A, Llavata-Peris CI, Bayer M, Kientz M et al (2012) Different auxin response machineries control distinct cell fates in the early plant embryo. Dev Cell 22:211–222

    Article  CAS  PubMed  Google Scholar 

  35. Jiménez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Rev Bras Fisiol Veg 13:196–223

    Article  Google Scholar 

  36. Feher A, Pasternak T, Otvos K, Miskolczi P, Dudits D (2002) Induction of embryogenic competence in somatic plant cells: a review. Biologia 57:5–12

    CAS  Google Scholar 

  37. Sagare AP, Lee YL, Lin TC, Chen CC, Tsay HS (2000) Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo (Fumariaceae)—a medicinal plant. Plant Sci 160:139–147

    Article  CAS  PubMed  Google Scholar 

  38. Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759

    Article  CAS  PubMed  Google Scholar 

  39. Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jurgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10:265–270

    Article  CAS  PubMed  Google Scholar 

  40. Ceccato L, Masiero S, Sinha Roy D, Bencivenga S, Roig-Villanova I, Ditengou FA et al (2013) Maternal control of PIN1 is required for female gametophyte development in Arabidopsis. PLoS One 8:e66148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Carman JG (1990) Embryogenic cells in plant-tissue cultures: occurrence and behavior. In Vitro Cell Dev Biol 26:746–753

    Article  Google Scholar 

  42. Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114

    Article  CAS  PubMed  Google Scholar 

  43. Karami O, Deljou A, Esna-Ashari M, Ostad-Ahmadi P (2006) Effect of sucrose concentrations on somatic embryogenesis in carnation (Dianthus caryophyllus L.). Sci Hortic 110:340–344

    Article  CAS  Google Scholar 

  44. Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK et al (2003) High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. Plant Cell Rep 21:635–639

    CAS  PubMed  Google Scholar 

  45. Patnaik D, Mahalakshmi A, Khurana P (2005) Effect of water stress and heavy metals on induction of somatic embryogenesis in wheat leaf base cultures. Indian J Exp Biol 43:740–745

    CAS  PubMed  Google Scholar 

  46. Santarem ER, Pelissier B, Finer JJ (1997) Effect of explant orientation, pH, solidifying agent and wounding on initiation of soybean somatic embryos. In Vitro Cell Dev Biol—Plant 33:13–19

    Article  CAS  Google Scholar 

  47. Jin F, Hu L, Yuan D, Xu J, Gao W, He L et al (2014) Comparative transcriptome analysis between somatic embryos (SEs) and zygotic embryos in cotton: evidence for stress response functions in SE development. Plant Biotechnol J 12:161–173

    Article  CAS  PubMed  Google Scholar 

  48. Karami O, Saidi A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507

    Article  CAS  PubMed  Google Scholar 

  49. Tucker MR, Okada T, Johnson SD, Takaiwa F, Koltunow AMG (2012) Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium. J Exp Bot 63:3229–3241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Kumar V, Malik SK, Pal D, Srinivasan R, Bhat SR (2014) Comparative transcriptome analysis of ovules reveals stress related genes associated with nucellar polyembryony in citrus. Tree Genet Genomes 1–16

    Google Scholar 

  51. Wilms HJ, van Went JL, Cresti M, Ciampolini F (1983) Adventive embryogenesis in citrus. Caryologia 36:65–78

    Article  Google Scholar 

  52. Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tiss Org Cult 90:1–8

    Article  CAS  Google Scholar 

  53. Zhang B, Wang ZJ, Jin SH, Xia GH, Huang YJ, Huang JQ (2012) A pattern of unique embryogenesis occurring via apomixis in Carya cathayensis. Biologia Plantarum 56:620–627

    Article  Google Scholar 

  54. Mordhorst AP, Toonen MAJ, De Vries SC (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576

    Article  Google Scholar 

  55. Scheres B, Wolkenfelt H, Viola W, Terlouw M, Lawson E, Dean C et al (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  56. Chandler J, Nardmann J, Werr W (2008) Plant development revolves around axes. Trends Plant Sci 13:78–84

    Article  CAS  PubMed  Google Scholar 

  57. Wendrich JR, Weijers D (2013) The arabidopsis embryo as a miniature morphogenesis model. New Phytol 199:14–25

    Article  PubMed  Google Scholar 

  58. Koltunow AM, Johnson SD, Bicknell RA (2000) Apomixis is not developmentally conserved in related, genetically characterized Hieracium plants of varying ploidy. Sex Plant Reprod 12:253–266

    Article  Google Scholar 

  59. Prem D, Solis MT, Barany I, Rodriguez-Sanz H, Risueno MC, Testillano PS (2012) A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus. BMC Plant Biol 12

    Google Scholar 

  60. Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org Cult 69:233–249

    Article  Google Scholar 

  61. Filonova LH, Bozhkov PV, Von Arnold S (2000) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot 51:249–264

    Article  CAS  PubMed  Google Scholar 

  62. Supena EDJ, Winarto B, Riksen T, Dubas E, Van Lammeren A, Offringa R et al (2008) Regeneration of zygotic-like microspore-derived embryos suggests an important role for the suspensor in early embryo patterning. J Exp Bot 59:803–814

    Article  CAS  PubMed  Google Scholar 

  63. Yeung EC, Meinke DW (1993) Embryogenesis in angiosperms: development of the suspensor. Plant Cell 5:1371–1381

    Article  PubMed Central  PubMed  Google Scholar 

  64. Joosen R, Cordewener J, Supena EDJ, Vorst O, Lammers M, Maliepaard C et al (2007) Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development. Plant Physiol 144:155–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Koltunow AM, Johnson SD, Bicknell RA (1998) Sexual and apomictic development in Hieracium. Sex Plant Reprod 11:213–230

    Article  Google Scholar 

  66. Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  67. Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  CAS  PubMed  Google Scholar 

  68. Ogawa D, Johnson SD, Henderson ST, Koltunow AM (2013) Genetic separation of autonomous endosperm formation (AutE) from two other components of apomixis in Hieracium. Plant Reprod 26:113–123

    Article  PubMed  Google Scholar 

  69. Schmidt EDL, Guzzo F, Toonen MAJ, De Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  70. Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U et al (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Hu H, Xiong L, Yang Y (2005) Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222:107–117

    Article  CAS  PubMed  Google Scholar 

  72. Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, Ferranti F et al (2005) SERK and APOSTART. Candidate genes for apomixis in Poa pratensis. Plant Physiol 138:2185–2199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Podio M, Felitti SA, Siena LA, Delgado L, Mancini M, Seijo JG et al (2014) Characterization and expression analysis of SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) genes in sexual and apomictic Paspalum notatum. Plant Mol Biol 84:479–495

    Article  CAS  PubMed  Google Scholar 

  74. Tucker MR, Araujo ACG, Paech NA, Hecht V, Schmidt EDL, Rossell JB et al (2003) Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways. Plant Cell 15:1524–1537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L et al (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Morcillo F, Gallard A, Pillot M, Jouannic S, Aberlenc-Bertossi F, Collin M et al (2007) EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm. Planta 226:1353–1362

    Article  CAS  PubMed  Google Scholar 

  77. Ouakfaoui SE, Schnell J, Abdeen A, Colville A, Labbé H, Han S et al (2010) Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol 74:313–326

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Conner JA, Goel S, Gunawan G, Cordonnier-Pratt MM, Johnson VE, Liang C et al (2008) Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus. Plant Physiol 147:1396–1411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci U S A 95:5127–5132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Lotan T, Ohto MA, Matsudaira Yee K, West MAL, Lo R, Kwong RW et al (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1196–1205

    Article  Google Scholar 

  81. Luerssen K, Kirik V, Herrmann P, Misera S (1998) FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J 15:755–764

    Article  CAS  PubMed  Google Scholar 

  82. Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL et al (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci U S A 98:11806–11811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J et al (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis. Proc Natl Acad Sci 105:3151–3156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell 7:373–385

    Article  CAS  PubMed  Google Scholar 

  85. Garcês HMP, Koenig D, Townsley BT, Kim M, Sinha NR (2014) Truncation of LEAFY COTYLEDON1 protein is required for asexual reproduction in Kalanchoë daigremontiana. Plant Physiol 165:196–206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Kőszegi D, Johnston AJ, Rutten T, Czihal A, Altschmied L, Kumlehn J et al (2011) Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant J 67:280–291

    Article  PubMed  CAS  Google Scholar 

  87. Lawit S, Chamberlin M, Agee A, Caswell E, Albertsen M (2013) Transgenic manipulation of plant embryo sacs tracked through cell-type specific fluorescent markers: cell labelling, cell ablation and adventitious embryos. Plant Reprod 26:125–137

    Article  PubMed  Google Scholar 

  88. Harding EW, Tang W, Nichols KW, Fernandez DE, Perry SE (2003) Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiol 133:653–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

  90. Laux T, Mayer KFX, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    CAS  PubMed  Google Scholar 

  91. Heck GR, Perry SE, Nichols KW, Fernandez DE (1995) AGL15, a MADS domain protein expressed in developing embryos. Plant Cell 7:1271–1282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Curtis MD, Grossniklaus U (2008) Molecular control of autonomous embryo and endosperm development. Sex Plant Reprod 21:79–88

    Article  Google Scholar 

  93. Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci U S A 103:18650–18655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Nakano M, Shimada T, Endo T, Fujii H, Nesumi H, Kita M et al (2012) Characterization of genomic sequence showing strong association with polyembryony among diverse Citrus species and cultivars, and its synteny with Vitis and Populus. Plant Sci 183:131–142

    Article  CAS  PubMed  Google Scholar 

  95. Leljak-Levanić D, Bauer N, Mihaljević S, Jelaska S (2004) Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. Plant Cell Rep 23:120–127

    Article  PubMed  CAS  Google Scholar 

  96. Yamamoto N, Kobayashi H, Togashi T, Mori Y, Kikuchi K, Kuriyama K et al (2005) Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor. J Plant Physiol 162:47–54

    Article  CAS  PubMed  Google Scholar 

  97. Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci U S A 96:13839–13844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Dean Rider Jr SD, Henderson JT, Jerome RE, Edenberg HJ, Romero-Severson J, Ogas J (2003) Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant J 35:33–43

    Article  CAS  Google Scholar 

  99. Henderson JT, Li HC, Rider SD, Mordhorst AP, Romero-Severson J, Cheng JC et al (2004) PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Physiol 134:995–1005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 94:4223–4228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ et al (1999) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:407–415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Schmidt A, Wöhrmann HJP, Raissig MT, Arand J, Gheyselinck J, Gagliardini V et al (2013) The Polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis. Plant J 73:776–787

    Article  CAS  PubMed  Google Scholar 

  103. Guitton AE, Berger F (2005) Loss of function of MULTICOPY SUPPRESSOR of IRA 1 produces nonviable parthenogenetic embryos in Arabidopsis. Curr Biol 15:750–754

    Article  CAS  PubMed  Google Scholar 

  104. Rodrigues JCM, Tucker MR, Johnson SD, Hrmova M, Koltunow AMG (2008) Sexual and apomictic seed formation in Hieracium requires the plant polycomb-group gene FERTILIZATION INDEPENDENT ENDOSPERM. Plant Cell 20:2372–2386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Makarevich G, Leroy O, Akinci U, Schubert D, Clarenz O, Goodrich J et al (2006) Different Polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep 7:947–952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Berger N, Dubreucq B, Roudier F, Dubos C, Lepiniec L (2011) Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27. Plant Cell 23:4065–4078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Tanaka M, Kikuchi A, Kamada H (2008) The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol 146:149–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Cigliano RA, Cremona G, Paparo R, Termolino P, Perrella G, Gutzat R et al (2013) Histone deacetylase AtHDA7 is required for female gametophyte and embryo development in Arabidopsis. Plant Physiol 163:431–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. G. Koltunow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hand, M.L., de Vries, S., Koltunow, A.M.G. (2016). A Comparison of In Vitro and In Vivo Asexual Embryogenesis. In: Germana, M., Lambardi, M. (eds) In Vitro Embryogenesis in Higher Plants. Methods in Molecular Biology, vol 1359. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3061-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3061-6_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3060-9

  • Online ISBN: 978-1-4939-3061-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics