Skip to main content

Somatic Embryogenesis: The Molecular Network Regulating Embryo Formation

  • Chapter
  • First Online:
Somatic Embryogenesis in Ornamentals and Its Applications

Abstract

Somatic embryogenesis in plants is a process by which embryos can be produced from somatic cells cultured under specific conditions. A key initial step is represented by the ability of some cells within the explants to dedifferentiate, i.e., reacquire a “young” or immature state, and then redirect their fate into an embryogenic pathway, demarked by precise changes in gene expression. While the initial morphological patterns of somatic embryo formation can be quite different and difficult to categorize, developing somatic embryos can be assigned similar stages ascribed to zygotic embryos. These similarities allow the utilization of somatic embryogenesis as a model system to investigate physiological and molecular events governing zygotic embryogenesis. The aim of this chapter is to provide a general overview of somatic embryogenesis, by describing and analyzing several in vitro embryogenic systems, and to decipher the molecular network responsible for the generation of somatic embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Katsumata H, Komeda Y, Takahashi T (2003) Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 130:635–643

    Article  PubMed  CAS  Google Scholar 

  • Aichinger E, Villar CBR, Farrona S, Reyes JC, Hennig L, Kohle C (2009) CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis. PLoS Genet 5, e1000605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    Article  PubMed  CAS  Google Scholar 

  • Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126:1563–1570

    PubMed  CAS  Google Scholar 

  • Barinova I, Clement C, Martiny L, Baillieul F, Soukupova H, Heberle-Bors E, Touraev A (2004) Regulation of developmental pathways in cultured microspores of tobacco and snapdragon by medium pH. Planta 219:141–146

    Article  PubMed  CAS  Google Scholar 

  • Baud S, Guyon V, Kronenberger J, Wuillème S, Miquel M, Caboche M, Lepiniec L, Rochat C (2003) Multifunctional acetyl‐CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J 33:75–86

    Article  PubMed  CAS  Google Scholar 

  • Bhojwani S, Razdan M (1996) Plant tissue culture: theory and practice. Elsevier, Amsterdam, pp 125–166

    Google Scholar 

  • Birnbaum KD, Alvarado AS (2008) Slicing across kingdoms: regeneration in plants and animals. Cell 132:697–710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma V, Kieft H, Ouellet T, Zhang L, Hattori J, Lui C, van Lammeren A, Miki B (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bratzel F, Lopez-Torrejon G, Koch M, Del Pozo JC, Calonje M (2010) Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. Curr Biol 20:1853–1859

    Article  PubMed  CAS  Google Scholar 

  • Carles CC, Fletcher JC (2003) Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci 8:394–401

    Article  PubMed  CAS  Google Scholar 

  • Chanvivattana Y, Bishopp A, Schubert A, Stock C, Moon YH, Sung ZR, Goodrich J (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–5276

    Article  PubMed  CAS  Google Scholar 

  • Chen SK, Kurdyukov S, Kereszt A, Wang XD, Gresshoff PM, Rose RJ (2009) The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula. Planta 230:827–840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark S, Williams R, Meyerowitz E (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585

    Article  PubMed  CAS  Google Scholar 

  • Cortes MM, Paredes FR, Burgeff C, Nunez TP, Cordova I, Oropeza C, Verdeil JL, Saenz L (2010) Characterisation of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell Tiss Org Cult 102:251–258

    Article  CAS  Google Scholar 

  • Costa S, Shaw P (2007) ‘Open minded’ cells: how cells can change fate. Trends Cell Biol 17:101–106

    Article  PubMed  CAS  Google Scholar 

  • De Jong AJ, Heidstra R, Spaink HP, Hartog MV, Meijer EA, Hendriks T, Lo Shiavo F, Terzi M, Bisseling T, van Kammen A, de Vries SC (1993) Rhizobium lipo-oligosacharides rescue a Daucus carota somatic embryo variant. Plant Cell 5:615–620

    Article  PubMed  PubMed Central  Google Scholar 

  • De Smet I, Lau S, Mayer U, Jürgens G (2010) Embryogenesis – the humble beginnings of plant life. Plant J 61:959–970

    Article  PubMed  CAS  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey FN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 8:423–433

    Article  Google Scholar 

  • Dodsworth S (2009) A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev Biol 336:1–9

    Article  PubMed  CAS  Google Scholar 

  • Elhiti M, Hebelstrup KH, Wang A, Li C, Cui Y, Hill RD, Stasolla C (2013a) Function of the type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis.The. Plant J 74:946–958

    Article  PubMed  CAS  Google Scholar 

  • Elhiti M, Stasolla C (2011) Ectopic expression of the Brassica SHOOTMERISTEMLESS attenuates the deleterious effects of the auxin transport inhibitor TIBA on somatic embryo number and morphology. Plant Sci 180:383–390

    Article  PubMed  CAS  Google Scholar 

  • Elhiti M, Stasolla C, Wang A (2013b) Molecular regulation of plant somatic embryogenesis. In Vitro Cell Dev Biol Plant 49:631–642

    Article  Google Scholar 

  • Elhiti M, Stasolla S (2013) Genetic of embryogenesis. Brenner’s encyclopedia of genetics (2nd edition) 5:343–345

    Google Scholar 

  • Elhiti M, Tahir M, Gulden RH, Khamiss K, Stasolla C (2010) Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot 61:4069–4085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elhiti MA (2010) Molecular characterization of several brassica shoot apical meristem genes and the effect of their altered expression during in vitro morphogenesis. Ph.D. thesis, Faculty of Graduate Studies, University of Manitoba

    Google Scholar 

  • Emons AMC (1994) Somatic embryogenesis: cell biological aspects. Acta Bot Neerl 43:1–14

    Article  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Org Cult 74:201–228

    Article  CAS  Google Scholar 

  • Feng Z, Sun X, Wang G, Liu H, Zhu J (2012) LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana. Ann Bot 160:2–10

    Google Scholar 

  • Fry SC (1995) Polysaccharide-modifying enzymes in the plant-cell wall. Annu Rev Plant Physiol Plant Mol Biol 46:497–520

    Article  CAS  Google Scholar 

  • Harada JJ (2001) Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J Plant Physiol 158:405–409

    Article  CAS  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, De Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. J Plant Physiol 127:803–816

    Article  CAS  Google Scholar 

  • Hemerly AS, Ferreira PC, Van Montagu M, Engler G, Inze D (2000) Cell division events are essential for embryo patterning and morphogenesis: studies on dominant negative cdc2aAt mutants of Arabidopsis. Plant J 23:123–130

    Article  PubMed  CAS  Google Scholar 

  • Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro S, Watanabe Y, Ito N, Nonaka H, Takeda N, Sakai T, Kanaya H, Okada K (2002) SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. EMBO J 21:898–908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joosen R, Cordewener J, Supena EDJ, Vorst O, Lammers M, Maliepaard C, Zeilmaker T, Miki B, America T, Custers J, Boutilier K (2007) Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development. Plant Physiol 144:155–172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kapros T, Bogre L, Nemeth K, LaszBako L, Gyorgyey J, Wu SC, Dudits D (1992) Differential expression of histone H3 gene variants during cell cycle and somatic embryogenesis in alfalfa. Plant Physiol 98:621–625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasha K, Yao Q, Simon E, Oro R, Hu T (1995) Production and application of double haploids in crops. University of Vienna Pusblisher, IAEA

    Google Scholar 

  • Keller W, Armstrong K (1979) Stimulation of embryogenesis and haploid production in Brassica campestris anther culture by elevated temperature treatments. Theor Appl Genet 55:65–67

    Article  PubMed  CAS  Google Scholar 

  • Knauer S, Holt AL, Rubi-Somoza I, Tucker EJ, Hinze A, Pisch M, Javelle M, Timmermans MC, Tucker M, Laux T (2013) A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell 24:125–132

    Article  PubMed  CAS  Google Scholar 

  • Leibfried A, To J, Busch W, Stehling S, Kehle A, Demar M, Kieber J, Lohmann J (2005) WUSCHEL controls meristem function by direct regulation of cytokinin inducible response regulators. Nature 438:1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Lindsey K, Pullen ML, Topping JF (2003) Importance of plant sterols in pattern formation and hormone signalling. Trends Plant Sci 8:521–525

    Article  PubMed  CAS  Google Scholar 

  • Liu HI, Wang GC, Feng Z, Zhu J (2010) Screening of genes associated with dedifferentiation and effect of LBD29 on pericycle cells in Arabidopsis thaliana. Plant Growth Regul 62:127–136

    Article  CAS  Google Scholar 

  • Malik M, Wang F, Dirpaul J, Zhou N, Polowick P, Ferrie A, Krochko J (2007) Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol 144:134–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22:3879–3889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mordhorst AP, Voerman KJ, Hartog MV, Meijer EA, van Went J, Koornneef M, de Vries SC (1998) Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics 149:549–563

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nogler G (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 475–518

    Chapter  Google Scholar 

  • Nowack MK, Grini PE, Jakoby MJ, Lafos M, Koncz C, Schnittger A (2006) A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 38:63–67

    Article  PubMed  CAS  Google Scholar 

  • Palovaara J, Hakman I (2009) WOX2 and polar auxin transport during spruce embryo pattern formation. Plant Signal Behav 4:153–155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park S, Harada JJ (2008) Arabidopsis embryogenesis. In: Plant embryogenesis, Humana Press, Totowa, pp 3–16

    Google Scholar 

  • Pechan P, Keller W (1989) Induction of microspore embryogenesis in Brassica napus L. by gamma irradiation and ethanol stress. In vitro Cell Dev Biol Plant 25:1073–1074

    Article  CAS  Google Scholar 

  • Raghavan V (2000) Developmental biology of flowering plants. Springer, New York

    Book  Google Scholar 

  • Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261

    Article  PubMed  CAS  Google Scholar 

  • Sieberer T, Hauser MT, Seifert GJ, Luschnig C (2003) PROPORZ1, a putative Arabidopsis transcriptional adaptor protein, mediates auxin and cytokinin signals in the control of cell proliferation. Curr Biol 13:837–842

    Article  PubMed  CAS  Google Scholar 

  • Simmonds D, Keller W (1999) Significance of preprophase bands of microtubules in the induction of microspore embryogenesis of Brassica napus. Planta 208:383–391

    Article  CAS  Google Scholar 

  • Smith DL, Kirkorian AD (1990) Somatic proembryo production from excised, wounded zygotic carrot embryos on hormone-free medium: evaluation of the effects of pH, ethylene and activated charcoal. Plant Cell Rep 9:468–470

    Article  Google Scholar 

  • Song JY, Leung T, Ehler LK, Wang C, Liu Z (2000) Regulation of meristem organization and cell division by TSO1, an Arabidopsis gene with cysteine-rich repeats. Development 127:2207–2217

    PubMed  CAS  Google Scholar 

  • Song S, Lee M, Clark S (2006) POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development 133:4691–4698

    Article  PubMed  CAS  Google Scholar 

  • Su YH, Zhang XS (2009) Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis. Plant Signal Behav 4:574–576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugiyama M (1999) Organogenesis in vitro. Curr Opin Plant Biol 2:61–64

    Article  PubMed  CAS  Google Scholar 

  • Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386

    Article  PubMed  CAS  Google Scholar 

  • Telmer C, Simmond D, Newcomb W (1992) Determination of developmental stage to obtain high frequencies of embryogenic microspores in Brassica napus. Physiol Plant 84:417–424

    Article  Google Scholar 

  • Touraev A, Pfosser M, Vicente O, Heberle-Bors E (1996) Stress as the major signal controlling the developmental fate of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis. Planta 200:144–152

    Article  CAS  Google Scholar 

  • Tsuwamoto R, Fukuoka H, Takahata Y (2007) Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta 225:641–652

    Article  PubMed  CAS  Google Scholar 

  • Tucker M, Hinze A, Tucker E, Takada S, Jurgens G, Laux T (2008) Vascular signaling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the Arabidopsis embryo. Development 135:28–39

    Article  CAS  Google Scholar 

  • Verdeil JL, Alemanno L, NiemenakN TTJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252

    Article  PubMed  CAS  Google Scholar 

  • Willemsen V, Scheres B (2004) Mechanisms of pattern formation in plant embryogenesis. Annu Rev Genet 38:587–614

    Article  PubMed  CAS  Google Scholar 

  • Willemsen V, Wolkenfelt H, de Vrieze G, Weisbeek P, Scheres B (1998) The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 125:521–531

    PubMed  CAS  Google Scholar 

  • Yeung E (2002) The canola microspore-derived embryo as a model system to study developmental process in plants. J Plant Biol 45:119–133

    Article  Google Scholar 

  • Yeung E, Rahman M, Thorpe T (1996) Comparative development of zygotic and microspore-derived embryos in Brassica napus L. cv Topas. I. Histodifferentiation. Int J Plant Sci 157:27–39

    Article  Google Scholar 

  • Yeung EC, Meinke DW (1993) Embryogenesis in angiosperms: development of the suspensor. Plant Cell 5:1371–1381

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Song C, Zhao MM, Li B, Guo SX (2012) Characterization of an A-type cyclin-dependent kinase gene from Dendrobium candidum. Biologia 67:360–368

    CAS  Google Scholar 

  • Zhang Z, Laux T (2011) The asymmetric division of the Arabidopsis zygote: from cell polarity to an embryo axis. Sex Plant Reprod 24:161–169

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Simmonds D, Newcomb W (1996) Induction of embryogenesis with colchicines instead of heat in microspores of Brassica napus L.c. Topaz. Planta 198:433–439

    Article  CAS  Google Scholar 

  • Zheng Y, Ren N, Wang H, Stromberg AJ, Perrya SE (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 21:2563–2577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Stasolla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Elhiti, M., Stasolla, C. (2016). Somatic Embryogenesis: The Molecular Network Regulating Embryo Formation. In: Mujib, A. (eds) Somatic Embryogenesis in Ornamentals and Its Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2683-3_14

Download citation

Publish with us

Policies and ethics