Skip to main content

Applications of Yeast Surface Display for Protein Engineering

  • Protocol
Yeast Surface Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1319))

Abstract

The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He M, Taussig MJ (1997) Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res 25:5132–5134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hanes J, Plückthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94:4937–4942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94:12297–12302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Mattheakis LC, Bhatt RR, Dower WJ (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci U S A 91:9022–9026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mattheakis LC, Dias JM, Dower WJ (1996) Cell-free synthesis of peptide libraries displayed on polysomes. Methods Enzymol 267:195–207

    CAS  PubMed  Google Scholar 

  6. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  7. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554

    Article  CAS  PubMed  Google Scholar 

  8. Francisco JA, Campbell R, Iverson BL, Georgiou G (1993) Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc Natl Acad Sci U S A 90:10444–10448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ho M, Nagata S, Pastan I (2006) Isolation of anti-CD22 Fv with high affinity by Fv display on human cells. Proc Natl Acad Sci U S A 103:9637–9642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Beerli RR et al (2008) Isolation of human monoclonal antibodies by mammalian cell display. Proc Natl Acad Sci U S A 105:14336–14341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ernst W et al (1998) Baculovirus surface display: construction and screening of a eukaryotic epitope library. Nucleic Acids Res 26:1718–1723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    Article  CAS  PubMed  Google Scholar 

  13. Kondo A, Ueda M (2004) Yeast cell-surface display—applications of molecular display. Appl Microbiol Biotechnol 64:28–40

    Article  CAS  PubMed  Google Scholar 

  14. Boder ET, Wittrup KD (2000) Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:430–444

    CAS  PubMed  Google Scholar 

  15. Kapteyn JC, Van Den Ende H, Klis FM (1999) The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 1426:373–383

    Article  CAS  PubMed  Google Scholar 

  16. Roy A, Lu CF, Marykwas DL, Lipke PN, Kurjan J (1991) The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol 11:4196–4206

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Lu CF et al (1995) Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall. J Cell Biol 128:333–340

    Article  CAS  PubMed  Google Scholar 

  18. Koide S, Koide A, Lipovšek D (2012) Target-binding proteins based on the 10th human fibronectin type III domain (10Fn3). Methods Enzymol 503:135–156

    CAS  PubMed  Google Scholar 

  19. Scholler N (2012) Selection of antibody fragments by yeast display. Methods Mol Biol 907:259–280

    CAS  PubMed  Google Scholar 

  20. Zhao Q, Zhu Z, Dimitrov DS (2012) Yeast display of engineered antibody domains. Methods Mol Biol 899:73–84

    CAS  PubMed  Google Scholar 

  21. Chao G et al (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768

    Article  CAS  PubMed  Google Scholar 

  22. Feldhaus MJ et al (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21:163–170

    Article  CAS  PubMed  Google Scholar 

  23. Miller KD, Pefaur NB, Baird CL (2008) Construction and screening of antigen targeted immune yeast surface display antibody libraries. Curr Protoc Cytom Chapter 4:Unit4.7

    Google Scholar 

  24. Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3:119–128

    Article  CAS  PubMed  Google Scholar 

  25. De Pourcq K, De Schutter K, Callewaert N (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 87:1617–1631

    Article  PubMed  CAS  Google Scholar 

  26. Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22:1409–1414

    Article  CAS  PubMed  Google Scholar 

  27. VanAntwerp JJ, Wittrup KD (2000) Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Prog 16:31–37

    Article  CAS  PubMed  Google Scholar 

  28. Kieke MC, Cho BK, Boder ET, Kranz DM, Wittrup KD (1997) Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng 10:1303–1310

    Article  CAS  PubMed  Google Scholar 

  29. Hackel BJ, Kapila A, Wittrup KD (2008) Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling. J Mol Biol 381:1238–1252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A 97:10701–10705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391

    Article  CAS  PubMed  Google Scholar 

  32. Lipovsek D et al (2007) Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J Mol Biol 368:1024–1041

    Article  CAS  PubMed  Google Scholar 

  33. Holler PD et al (2000) In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc Natl Acad Sci U S A 97:5387–5392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Cochran JR, Kim Y-S, Lippow SM, Rao B, Wittrup KD (2006) Improved mutants from directed evolution are biased to orthologous substitutions. Protein Eng Des Sel 19:245–253

    Article  CAS  PubMed  Google Scholar 

  35. Rao BM, Girvin AT, Ciardelli T, Lauffenburger DA, Wittrup KD (2003) Interleukin-2 mutants with enhanced alpha-receptor subunit binding affinity. Protein Eng 16:1081–1087

    Article  CAS  PubMed  Google Scholar 

  36. Rao BM, Driver I, Lauffenburger DA, Wittrup KD (2005) High-affinity CD25-binding IL-2 mutants potently stimulate persistent T cell growth. Biochemistry 44:10696–10701

    Article  CAS  PubMed  Google Scholar 

  37. Shpilman M et al (2011) Development and characterization of high affinity leptins and leptin antagonists. J Biol Chem 286:4429–4442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kariolis MS et al (2014) An engineered Axl “decoy receptor” effectively silences the Gas6-Axl signaling axis. Nat Chem Biol 10:977–983

    Article  CAS  PubMed  Google Scholar 

  39. Weiskopf K et al (2013) Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341:88–91

    Article  CAS  PubMed  Google Scholar 

  40. Weiskopf K et al (2013) Improving macrophage responses to therapeutic antibodies by molecular engineering of SIRPα variants. Oncoimmunology 2:e25773

    Article  PubMed Central  PubMed  Google Scholar 

  41. Tasumi S et al (2009) High-affinity lamprey VLRA and VLRB monoclonal antibodies. Proc Natl Acad Sci U S A 106:12891–12896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Walker LM, Bowley DR, Burton DR (2009) Efficient recovery of high-affinity antibodies from a single-chain Fab yeast display library. J Mol Biol 389:365–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Shembekar N et al (2013) Isolation of a high affinity neutralizing monoclonal antibody against 2009 pandemic H1N1 virus that binds at the “Sa” antigenic site. PLoS One 8:e55516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Wozniak-Knopp G et al (2010) Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. Protein Eng Des Sel 23:289–297

    Article  CAS  PubMed  Google Scholar 

  45. Rajpal A et al (2005) A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc Natl Acad Sci U S A 102:8466–8471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Boder ET, Raeeszadeh-Sarmazdeh M, Price JV (2012) Engineering antibodies by yeast display. Arch Biochem Biophys 526:99–106

    Article  CAS  PubMed  Google Scholar 

  47. Moore SJ, Cochran JR (2012) Engineering knottins as novel binding agents. Methods Enzymol 503:223–251

    CAS  PubMed  Google Scholar 

  48. Gera N, Hussain M, Rao BM (2013) Protein selection using yeast surface display. Methods 60:15–26

    Article  CAS  PubMed  Google Scholar 

  49. Silverman AP, Kariolis MS, Cochran JR (2011) Cystine-knot peptides engineered with specificities for α(IIb)β(3) or α(IIb)β(3) and α(v)β(3) integrins are potent inhibitors of platelet aggregation. J Mol Recognit 24:127–135

    Article  CAS  PubMed  Google Scholar 

  50. Kimura RH, Levin AM, Cochran FV, Cochran JR (2009) Engineered cystine knot peptides that bind alphavbeta3, alphavbeta5, and alpha5beta1 integrins with low-nanomolar affinity. Proteins 77:359–369

    Article  CAS  PubMed  Google Scholar 

  51. Silverman AP, Levin AM, Lahti JL, Cochran JR (2009) Engineered cystine-knot peptides that bind alpha(v)beta(3) integrin with antibody-like affinities. J Mol Biol 385:1064–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Moore SJ, Leung CL, Norton HK, Cochran JR (2013) Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. PLoS One 8:e60498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Kimura RH et al (2011) Functional mutation of multiple solvent-exposed loops in the Ecballium elaterium trypsin inhibitor-II cystine knot miniprotein. PLoS One 6:e16112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Glotzbach B et al (2013) Combinatorial optimization of cystine-knot peptides towards high-affinity inhibitors of human matriptase-1. PLoS One 8:e76956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Koide A, Bailey CW, Huang X, Koide S (1998) The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol 284:1141–1151

    Article  CAS  PubMed  Google Scholar 

  56. Lipovsek D (2011) Adnectins: engineered target-binding protein therapeutics. Protein Eng Des Sel 24:3–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Bloom L, Calabro V (2009) FN3: a new protein scaffold reaches the clinic. Drug Discov Today 14:949–955

    Article  CAS  PubMed  Google Scholar 

  58. Pavoor TV, Cho YK, Shusta EV (2009) Development of GFP-based biosensors possessing the binding properties of antibodies. Proc Natl Acad Sci U S A 106:11895–11900

    Article  PubMed Central  PubMed  Google Scholar 

  59. Lee C-H et al (2010) Engineering of a human kringle domain into agonistic and antagonistic binding proteins functioning in vitro and in vivo. Proc Natl Acad Sci U S A 107:9567–9571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Gera N, Hussain M, Wright RC, Rao BM (2011) Highly stable binding proteins derived from the hyperthermophilic Sso7d scaffold. J Mol Biol 409:601–616

    Article  CAS  PubMed  Google Scholar 

  61. Puri V, Streaker E, Prabakaran P, Zhu Z, Dimitrov DS (2013) Highly efficient selection of epitope specific antibody through competitive yeast display library sorting. MAbs 5:533–539

    Article  PubMed Central  PubMed  Google Scholar 

  62. Shusta EV, Kieke MC, Parke E, Kranz DM, Wittrup KD (1999) Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J Mol Biol 292:949–956

    Article  CAS  PubMed  Google Scholar 

  63. Kowalski JM, Parekh RN, Wittrup KD (1998) Secretion efficiency in Saccharomyces cerevisiae of bovine pancreatic trypsin inhibitor mutants lacking disulfide bonds is correlated with thermodynamic stability. Biochemistry 37:1264–1273

    Article  CAS  PubMed  Google Scholar 

  64. Kowalski JM, Parekh RN, Mao J, Wittrup KD (1998) Protein folding stability can determine the efficiency of escape from endoplasmic reticulum quality control. J Biol Chem 273:19453–19458

    Article  CAS  PubMed  Google Scholar 

  65. Shusta EV, Holler PD, Kieke MC, Kranz DM, Wittrup KD (2000) Directed evolution of a stable scaffold for T-cell receptor engineering. Nat Biotechnol 18:754–759

    Article  CAS  PubMed  Google Scholar 

  66. Kim Y-S, Bhandari R, Cochran JR, Kuriyan J, Wittrup KD (2006) Directed evolution of the epidermal growth factor receptor extracellular domain for expression in yeast. Proteins 62:1026–1035

    Article  CAS  PubMed  Google Scholar 

  67. Esteban O, Zhao H (2004) Directed evolution of soluble single-chain human class II MHC molecules. J Mol Biol 340:81–95

    Article  CAS  PubMed  Google Scholar 

  68. Traxlmayr MW, Obinger C (2012) Directed evolution of proteins for increased stability and expression using yeast display. Arch Biochem Biophys 526:174–180

    Article  CAS  PubMed  Google Scholar 

  69. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191

    Article  CAS  PubMed  Google Scholar 

  70. Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894

    Article  CAS  PubMed  Google Scholar 

  71. Park S et al (2006) Limitations of yeast surface display in engineering proteins of high thermostability. Protein Eng Des Sel 19:211–217

    Article  CAS  PubMed  Google Scholar 

  72. Pavoor TV, Wheasler JA, Kamat V, Shusta EV (2012) An enhanced approach for engineering thermally stable proteins using yeast display. Protein Eng Des Sel 25:625–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Traxlmayr MW et al (2012) Directed evolution of stabilized IgG1-Fc scaffolds by application of strong heat shock to libraries displayed on yeast. Biochim Biophys Acta 1824:542–549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Traxlmayr MW et al (2013) Directed evolution of Her2/neu-binding IgG1-Fc for improved stability and resistance to aggregation by using yeast surface display. Protein Eng Des Sel 26:255–265

    Article  CAS  PubMed  Google Scholar 

  75. Jones DS, Tsai P-C, Cochran JR (2011) Engineering hepatocyte growth factor fragments with high stability and activity as Met receptor agonists and antagonists. Proc Natl Acad Sci U S A 108:13035–13040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Schweickhardt RL, Jiang X, Garone LM, Brondyk WH (2003) Structure-expression relationship of tumor necrosis factor receptor mutants that increase expression. J Biol Chem 278:28961–28967

    Article  CAS  PubMed  Google Scholar 

  77. Buonpane RA, Moza B, Sundberg EJ, Kranz DM (2005) Characterization of T cell receptors engineered for high affinity against toxic shock syndrome toxin-1. J Mol Biol 353:308–321

    Article  CAS  PubMed  Google Scholar 

  78. Jones LL et al (2006) Engineering and characterization of a stabilized alpha1/alpha2 module of the class I major histocompatibility complex product Ld. J Biol Chem 281:25734–25744

    Article  CAS  PubMed  Google Scholar 

  79. Weber KS, Donermeyer DL, Allen PM, Kranz DM (2005) Class II-restricted T cell receptor engineered in vitro for higher affinity retains peptide specificity and function. Proc Natl Acad Sci U S A 102:19033–19038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Henke E, Bornscheuer UT (1999) Directed evolution of an esterase from Pseudomonas fluorescens. Random mutagenesis by error-prone PCR or a mutator strain and identification of mutants showing enhanced enantioselectivity by a resorufin-based fluorescence assay. Biol Chem 380:1029–1033

    Article  CAS  PubMed  Google Scholar 

  81. Sroga GE, Dordick JS (2001) Generation of a broad esterolytic subtilisin using combined molecular evolution and periplasmic expression. Protein Eng 14:929–937

    Article  CAS  PubMed  Google Scholar 

  82. Stevenson BJ, Yip SH-C, Ollis DL (2013) In vitro directed evolution of enzymes expressed by E. coli in microtiter plates. Methods Mol Biol 978:237–249

    CAS  PubMed  Google Scholar 

  83. Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656

    Article  CAS  PubMed  Google Scholar 

  84. Griffiths AD, Tawfik DS (2003) Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J 22:24–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Lipovsek D et al (2007) Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display. Chem Biol 14:1176–1185

    Article  CAS  PubMed  Google Scholar 

  86. Antipov E, Cho AE, Wittrup KD, Klibanov AM (2008) Highly L and D enantioselective variants of horseradish peroxidase discovered by an ultrahigh-throughput selection method. Proc Natl Acad Sci U S A 105:17694–17699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Chen I, Dorr BM, Liu DR (2011) A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A 108:11399–11404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Fushimi T et al (2013) Mutant firefly luciferases with improved specific activity and dATP discrimination constructed by yeast cell surface engineering. Appl Microbiol Biotechnol 97:4003–4011

    Article  CAS  PubMed  Google Scholar 

  89. Han S, Zhang J, Han Z, Zheng S, Lin Y (2011) Combination of site-directed mutagenesis and yeast surface display enhances Rhizomucor miehei lipase esterification activity in organic solvent. Biotechnol Lett 33:2431–2438

    Article  CAS  PubMed  Google Scholar 

  90. Zhang K et al (2013) Engineering the substrate specificity of the DhbE adenylation domain by yeast cell surface display. Chem Biol 20:92–101

    Article  CAS  PubMed  Google Scholar 

  91. White KA, Zegelbone PM (2013) Directed evolution of a probe ligase with activity in the secretory pathway and application to imaging intercellular protein-protein interactions. Biochemistry. doi:10.1021/bi400268m

    Google Scholar 

  92. Yi L et al (2013) Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries. Proc Natl Acad Sci U S A 110:7229–7234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Steffens DL, Williams JGK (2007) Efficient site-directed saturation mutagenesis using degenerate oligonucleotides. J Biomol Tech 18:147–149

    PubMed Central  PubMed  Google Scholar 

  94. Cochran JR, Kim Y-S, Olsen MJ, Bhandari R, Wittrup KD (2004) Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J Immunol Methods 287:147–158

    Article  CAS  PubMed  Google Scholar 

  95. Chao G, Cochran JR, Wittrup KD (2004) Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 342:539–550

    Article  CAS  PubMed  Google Scholar 

  96. Boersma YL, Chao G, Steiner D, Wittrup KD, Plückthun A (2011) Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling. J Biol Chem 286:41273–41285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Han T et al (2011) Fine epitope mapping of monoclonal antibodies against hemagglutinin of a highly pathogenic H5N1 influenza virus using yeast surface display. Biochem Biophys Res Commun 409:253–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Mata-Fink J et al (2013) Rapid conformational epitope mapping of anti-gp120 antibodies with a designed mutant panel displayed on yeast. J Mol Biol 425:444–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Pepper LR, Cho YK, Boder ET, Shusta EV (2008) A decade of yeast surface display technology: where are we now? Comb Chem High Throughput Screen 11:127–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17:467–473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Bidlingmaier S, Liu B (2006) Construction and application of a yeast surface-displayed human cDNA library to identify post-translational modification-dependent protein-protein interactions. Mol Cell Proteomics 5:533–540

    Article  CAS  PubMed  Google Scholar 

  102. Bidlingmaier S et al (2009) Identification of MCAM/CD146 as the target antigen of a human monoclonal antibody that recognizes both epithelioid and sarcomatoid types of mesothelioma. Cancer Res 69:1570–1577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Bidlingmaier S, Liu B (2007) Interrogating yeast surface-displayed human proteome to identify small molecule-binding proteins. Mol Cell Proteomics 6:2012–2020

    Article  CAS  PubMed  Google Scholar 

  104. Kondo A, Tanaka T, Hasunuma T, Ogino C (2010) Applications of yeast cell-surface display in bio-refinery. Recent Pat Biotechnol 4:226–234

    Article  CAS  PubMed  Google Scholar 

  105. Tanaka T, Yamada R, Ogino C, Kondo A (2012) Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 95:577–591

    Article  CAS  PubMed  Google Scholar 

  106. Fujita Y et al (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143

    Article  CAS  PubMed  Google Scholar 

  108. Shigechi H et al (2004) Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Appl Environ Microbiol 70:5037–5040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Tsai S-L, DaSilva NA, Chen W (2013) Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol 2:14–21

    Article  CAS  PubMed  Google Scholar 

  110. Kim S, Baek S-H, Lee K, Hahn J-S (2013) Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microb Cell Fact 12:14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Tsai S-L, Oh J, Singh S, Chen R, Chen W (2009) Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75:6087–6093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Tsai S-L, Goyal G, Chen W (2010) Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl Environ Microbiol 76:7514–7520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68:4517–4522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Pan X-X et al (2012) Efficient display of active Geotrichum sp. lipase on Pichia pastoris cell wall and its application as a whole-cell biocatalyst to enrich EPA and DHA in fish oil. J Agric Food Chem 60:9673–9679

    Article  CAS  PubMed  Google Scholar 

  115. Kim S, Oh D-B, Kwon O, Kang HA (2010) Construction of an in vitro trans-sialylation system: surface display of Corynebacterium diphtheriae sialidase on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88:893–903

    Article  CAS  PubMed  Google Scholar 

  116. Wang H et al (2013) Yeast surface displaying glucose oxidase as whole-cell biocatalyst: construction, characterization, and its electrochemical glucose sensing application. Anal Chem 85:6107–6112

    Article  CAS  PubMed  Google Scholar 

  117. Ren R et al (2007) Display of adenoregulin with a novel Pichia pastoris cell surface display system. Mol Biotechnol 35:103–108

    Article  CAS  PubMed  Google Scholar 

  118. Jo J-H, Im E-M, Kim S-H, Lee H-H (2011) Surface display of human lactoferrin using a glycosylphosphatidylinositol-anchored protein of Saccharomyces cerevisiae in Pichia pastoris. Biotechnol Lett 33:1113–1120

    Article  CAS  PubMed  Google Scholar 

  119. Shibasaki S et al (2013) An oral vaccine against candidiasis generated by a yeast molecular display system. Pathog Dis 69:262–268

    Article  CAS  PubMed  Google Scholar 

  120. Tamaru Y et al (2006) Application of the arming system for the expression of the 380R antigen from red sea bream iridovirus (RSIV) on the surface of yeast cells: a first step for the development of an oral vaccine. Biotechnol Prog 22:949–953

    Article  CAS  PubMed  Google Scholar 

  121. Wasilenko JL, Sarmento L, Spatz S, Pantin-Jackwood M (2010) Cell surface display of highly pathogenic avian influenza virus hemagglutinin on the surface of Pichia pastoris cells using alpha-agglutinin for production of oral vaccines. Biotechnol Prog 26:542–547

    CAS  PubMed  Google Scholar 

  122. Kotrba P, Ruml T (2010) Surface display of metal fixation motifs of bacterial P1-type ATPases specifically promotes biosorption of Pb(2+) by Saccharomyces cerevisiae. Appl Environ Microbiol 76:2615–2622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Kuroda K, Shibasaki S, Ueda M, Tanaka A (2001) Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697–701

    Article  CAS  PubMed  Google Scholar 

  124. Kuroda K, Ueda M (2003) Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Appl Microbiol Biotechnol 63:182–186

    Article  CAS  PubMed  Google Scholar 

  125. Kuroda K, Ueda M, Shibasaki S, Tanaka A (2002) Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol 59:259–264

    Article  CAS  PubMed  Google Scholar 

  126. Kuroda K, Nishitani T, Ueda M (2012) Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl Microbiol Biotechnol 96:153–159

    Article  CAS  PubMed  Google Scholar 

  127. Kuroda K, Ueda M (2006) Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 70:458–463

    Article  CAS  PubMed  Google Scholar 

  128. Nishitani T, Shimada M, Kuroda K, Ueda M (2010) Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl Microbiol Biotechnol 86:641–648

    Article  CAS  PubMed  Google Scholar 

  129. Midelfort KS et al (2004) Substantial energetic improvement with minimal structural perturbation in a high affinity mutant antibody. J Mol Biol 343:685–701

    Article  CAS  PubMed  Google Scholar 

  130. Pettersen EF et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Gerald M. Cherf is supported by the National Cancer Institute of the National Institutes of Health under Award Number F31CA186478, and funding from the Stanford Bioengineering Department. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer R. Cochran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cherf, G.M., Cochran, J.R. (2015). Applications of Yeast Surface Display for Protein Engineering. In: Liu, B. (eds) Yeast Surface Display. Methods in Molecular Biology, vol 1319. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2748-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2748-7_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2747-0

  • Online ISBN: 978-1-4939-2748-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics