Skip to main content

Coffee (Coffea arabica L.)

  • Protocol
  • First Online:
Agrobacterium Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1224))

Abstract

Coffee (Coffea sp.) is a perennial plant widely cultivated in many tropical countries. It is a cash crop for millions of small farmers in these areas. As for other tree species, coffee has long breeding cycles, which makes conventional breeding programs time-consuming. For that matter, genetic transformation can be an effective way to introduce a desired trait in elite varieties or for functional genomics. In this chapter, we describe two highly efficient and reliable Agrobacterium-mediated transformation techniques developed for the C. arabica cultivated species: (1) A. tumefaciens to study and introduce genes conferring resistance/tolerance to biotic (coffee leaf rust, insects) and abiotic stress (drought, heat, seed desiccation) in fully transformed plants and (2) A. rhizogenes to study candidate gene expression for nematode resistance in transformed roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertrand B, Etienne H, Cilas C et al (2005) Coffea arabica hybrid performance for yield, fertility and bean weight. Euphytica 141:255–262

    Article  Google Scholar 

  2. Bertrand B, Alpizar E, Llara L et al (2011) Performance of Arabica F1 hybrids in agroforestry and full-sun cropping systems in comparison with pure lines varieties. Euphytica 181:147–158

    Article  Google Scholar 

  3. Leroy T, Montagnon C, Cilas C (1997) Reciprocal recurrent selection applied to Coffea canephora Pierre. III Genetic gains and results of first cycle intergroup crosses. Euphytica 95:347–354

    Google Scholar 

  4. Capot J (1977) L’amélioration du caféier Robusta en Côte d’Ivoire. Café Cacao Thé 21:233–244

    Google Scholar 

  5. Estruch JJ, Carozzi NB, Desai N et al (1997) Transgenic plants: an emerging approach to pest control. Nature Biotech 15:137–141

    Article  CAS  Google Scholar 

  6. Schuler TH, Poppy GM, Kerry BR et al (1998) Insect-resistant transgenic plants. Tib Technol 16:168–175

    CAS  Google Scholar 

  7. Guerreiro O, Denolf P, Peferoen M et al (1998) Susceptibility of the coffee leaf miner (Perileucoptera spp.) to Bacillus thuringiensis δ-endotoxins : a model for transgenic perennial crops resistant to endocarpic pests. Curr Microbiol 36:175–179

    Article  Google Scholar 

  8. Dandekar AM, McGranahan GH, Vail PV et al (1998) High levels of expression of full-length cryIA(c) gene from Bacillus thuringiensis in transgenic somatic walnut embryos. Plant Sci 131:181–193

    Article  CAS  Google Scholar 

  9. Surekha K, Royer M, Naidu R, et al. (2002) Bioassay of Bacillus thuringiensis toxins against two major coffee pests, ie coffee berry borer (Hypothenemus hampei) and coffee white stem borer (Xylotrechus quadripes). In: SIP (eds) Annual meeting of the society for invertebrate pathology. 35, 2002/08/18-23, Foz de Iguassu, Brésil, Program and Abstracts, p 85

    Google Scholar 

  10. Perthuis B, Pradon J, Montagnon C et al (2005) Stable resistance against the leaf miner Leucoptera coffeella expressed by genetically transformed Coffea canephora in a pluriannual field experiment in French Guiana. Euphytica 144:321–329

    Article  Google Scholar 

  11. Campos VP, Sivapalan P, Gnanapragasam NC (1990) Nematode parasites of coffee, cocoa and tea. Luc M., Sikora RA., Bridge J eds. Plant-parasitic nematodes in subtropical and tropical agriculture. CAB International, In, pp 113–126

    Google Scholar 

  12. Noir S, Anthony F, Bertrand B et al (2003) Identification of a major gene (Mex-1) from Coffea canephora conferring resistance to Meloidogyne exigua in Coffea arabica. Plant Pathol 52:97–103

    Article  CAS  Google Scholar 

  13. Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol-Plant 37:687–700

    Article  CAS  Google Scholar 

  14. Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol-Plant 43:383–403

    Article  CAS  Google Scholar 

  15. Jian B, Hou W, Wu C et al (2009) Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biol 9:78. doi:10.1186/1471-2229-9-78

  16. Van der Vossen HAM (2005) State of the art of developing durable resistance to biotrophic pathogens in crop plants, such as coffee leaf rust. In: Zambolim E, Zambolim M, Varzea VMP (eds) Resistance to Coffee Leaf Rust. Brazil, Vicosa, p 305

    Google Scholar 

  17. Mahé L, Combes MC, Varzea VMP et al (2008) Development of sequence characterized DNA markers linked to leaf rust (Hemileia vastatrix) resistance. Mol Breeding 21:105–113

    Article  Google Scholar 

  18. Lashermes P, Combes MC, Ribas A et al (2010) Genetic and physical mapping of the SH3 locus that confers resistance to leaf rust in coffee (Coffea arabica L.). Tree Gen Gen 6:973–980

    Google Scholar 

  19. Ribas A, Cenci A, Combes M-F et al (2011) Organization and molecular evolution of a disease-resistance gene cluster in Coffee trees. BMC Genomics 12:240, http://www.biomedcentral.com/1471-2164/12/240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Etienne H, Anthony F, Dussert S et al (2002) Biotechnological applications for the improvement of coffee (Coffea arabica L.). In Vitro Cell Dev Biol- Plant 38:129–138

    Article  Google Scholar 

  21. De Los Santos-Briones C, Hernández-Sotomayor SMT (2006) Coffee biotechnology. Braz J Plant Physiol 18:217–227

    Article  Google Scholar 

  22. Marraccini P, Freire LP, Alves GSC et al (2011) RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress. BMC Plant Biol 11:85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Marraccini P, Pereira LPP, Ferreira LP et al (2003) Biochemical and molecular characterization of enzyme controlling sugar metabolism during coffee bean development. ISPMB conference, Barcelona (Spain), 23–28 June 2003, poster S19–14

    Google Scholar 

  24. Marraccini P, Deshayes A, Pétiard V et al (1999) Molecular cloning of the complete 11S seed storage protein gene of Coffea arabica and promoter analysis in transgenic tobacco plants. Plant Physiol Biochem 37:273–282

    Article  CAS  Google Scholar 

  25. Petitot AS, Barsalobres-Cavallari C, Ramiro D et al (2013) Promoter analysis of the WRKY transcription factors CaWRKY1a and CaWRKY1b homoeologous genes in coffee (Coffea arabica). Plant Cell Rep 32(8):1263–1276, doi:1007/s00299-013-1440-3

    Article  CAS  PubMed  Google Scholar 

  26. Lashermes P, Combes MC, Prakash NS et al (2001) A genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meiosis. Genome 44:589–595

    Article  CAS  PubMed  Google Scholar 

  27. Leroy T, De Bellis F, Legnate H et al (2011) Improving the quality of African robustas: QTLs for yield- and quality-related traits in Coffea canephora. Tree Genetics & Genomes 7:781–798

    Article  Google Scholar 

  28. Leroy T, Marraccini P, Dufour M et al (2005) Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes. Theor Applied Genet 111:1032–1041

    Article  CAS  Google Scholar 

  29. Denoeud F, Carretero-Paulet L, Dereeper A et al (2014) Structure and adaptive landscape of the coffee genome. Science (in press)

    Google Scholar 

  30. Barton CR, Adams TL, Zarowitz MA (1991) Stable transformation of foreign DNA into Coffea arabica plants. In: ASIC (eds) 14th International colloquium on coffee science, San Francisco (USA), 14–19 July 1991, ASIC, Paris (France), pp 853–859

    Google Scholar 

  31. Feng Q, Yang MZ, Zheng XQ et al (1992) Agrobacterium mediated transformation of coffee (Coffea arabica L.). Chn J Biotech 8:255–260

    CAS  Google Scholar 

  32. Freire AV, Lightfoot DA, Preece JE (1994) Genetic transformation of coffee (Coffea arabica L.) by Agrobacterium spp. Hortsci 29:454

    Google Scholar 

  33. Alpizar E, Dechamp E, Espeout S et al (2006) Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep 25:959–967

    Article  CAS  PubMed  Google Scholar 

  34. Alpizar E, Dechamp E, Guilhaumon C et al (2008) Agrobacterium rhizogenes-transformed roots of coffee: conditions for long-term proliferation, morphological and molecular characterization. Ann Bot 101:929–940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Spiral J, Pétiard V (1993) Développement d'une méthode de transformation appliquée à différentes espèces de caféiers et régénération de plantules transgéniques. In: ASIC (eds) 15th International colloquium on coffee science, Montpellier (Fra), 6–11 June 1993, ASIC, Paris (France), pp 115–122

    Google Scholar 

  36. Spiral J, Thierry C, Paillard M et al (1993) Obtention de plantules de Coffea canephora Pierre (Robusta) transformées par Agrobacterium rhizogenes. C R Acad Sci Paris 316:1–6

    CAS  Google Scholar 

  37. Sugiyama M, Matsuoka C, Takagi T (1995) Transformation of coffee with Agrobacterium rhizogenes. In: ASIC (eds) 16th International colloquium on coffee science, Kyoto (Jap), 9–14 April 1995, ASIC, Paris (France), pp 853–859

    Google Scholar 

  38. Hatanaka T, Choi YE, Kusano T et al (1999) Transgenic plants of coffee Coffea canephora from embryogenic callus via Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep 19:106–110

    Article  CAS  Google Scholar 

  39. Leroy T, Paillard M, Royer M et al (1998) Introduction de gènes d’intérêt agronomique dans l’espèce Coffea canephora Pierre par transformation avec Agrobacterium sp. In: ASIC (eds) 17th international colloqium on coffee science, Nairobi (Kenya), 20–25 July 1997, ASIC, Paris, pp 439–445

    Google Scholar 

  40. Leroy T, Henry AM, Royer M et al (2000) Genetically modified coffee plants expressing the Bacillus thuringiensis cry1Ac gene for resistance to leaf miner. Plant Cell Rep 19:382–389

    Article  CAS  Google Scholar 

  41. Etienne H, Bertrand B, Georget F et al (2013) Development of coffee somatic and zygotic embryos to plants differs in the morphological, histochemical and hydration aspects. Tree Physiol 33:640–653

    Google Scholar 

  42. Bobadilla Landey R, Cenci A, Georget F et al (2013) High genetic and epigenetic stability in Coffea arabica plants derived from embryogenic suspensions and secondary embryogenesis as revealed by AFLP, MSAP and the phenotypic variation rate. PloS ONE 8(2):e56372. doi:10.1371/journal.pone.0056372

    Article  PubMed Central  PubMed  Google Scholar 

  43. Ribas A, Dechamp E, Bertrand B, Champion A et al (2011) Agrobacterium tumefaciens-mediated genetic transformation of Coffea arabica (L.) is highly enhanced by using long-term maintained embryogenic callus. BMC Plant Biol 11:92, doi:10.1186/1471-2229-11-92. http://www.biomedcentral.com/1471-2229/11/92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Mugnier J (1988) Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep 7:9–12

    Article  CAS  PubMed  Google Scholar 

  45. Kifle S, Shao M, Jung C et al (1999) An improved transformation protocol for studying gene expression in hairy roots of sugar beet (Beta vulgaris L.). Plant Cell Rep 18:514–519

    Article  CAS  Google Scholar 

  46. Bertrand B, Anthony F, Lashermes P (2001) Breeding for resistance to Meloidogyne exigua in Coffea arabica by introgression of resistance genes of Coffea canephora. Plant Pathol 50:637–643

    Article  Google Scholar 

  47. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Etienne H (2005) Protocol of somatic embryogenesis: coffee (Coffea arabica L. and C. canephora P.). In: Jain SM, Gupta PK (eds) Protocols for somatic embryogenesis in woody plants series: forestry sciences, vol 77. Springer, Deutschland, pp 167–179. ISBN 1-4020-2984-5

    Chapter  Google Scholar 

  50. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  51. Jouanin L, Tourneur J, Casse-Delbart F (1986) Restriction maps and homologies of the three plasmids of Agrobacterium rhizogenes strain A4. Plasmid 16:124–134

    Article  CAS  PubMed  Google Scholar 

  52. Jefferson R (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  53. Vancanneyt G, Schmidt R, O’Connor-Sanchez A et al (1990) Construction of an intron-containing marker gene. Splicing of the intron in transgenic plants and its issue in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Gen 220:245–250

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Etienne Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Déchamp, E., Breitler, JC., Leroy, T., Etienne, H. (2015). Coffee (Coffea arabica L.). In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 1224. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1658-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1658-0_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1657-3

  • Online ISBN: 978-1-4939-1658-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics