Skip to main content

Genetic Inducible Fate Mapping in Adult Mice Using Tamoxifen-Dependent Cre Recombinases

  • Protocol
  • First Online:
Mouse Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1194))

Abstract

The Cre/lox site-specific recombination system allows the control of gene activity in space and time in almost any tissue of the mouse. A major technical advance was the development of tamoxifen-dependent Cre recombinases, such as CreERT2, that can be activated by administration of tamoxifen to the animal. This powerful tool greatly facilitates the study of gene functions and the generation of more realistic animal models of sporadic human diseases. Another important application of tamoxifen-dependent Cre recombinases is genetic inducible fate mapping (GIFM). In GIFM studies, the inducible Cre/lox system is used to genetically label a defined cell population at a selected time by irreversible activation of the expression of a Cre-responsive reporter transgene. Then, marked cells are detected at later time points to determine how the originally labeled progenitors contribute to specific structures and cell types during pre- and postnatal development. GIFM was initially applied during mouse embryogenesis, but is now increasingly used for cell lineage tracing in adult mice under physiological and pathophysiological conditions. Here we describe the design of GIFM experiments in adult mice as exemplified by CreERT2-assisted tracing of vascular smooth muscle cells during the development of atherosclerotic lesions. First, we give an overview of reporter transgenes available for genetic cell marking that are expressed from the Rosa26 locus, such as β-galactosidase and fluorescent proteins. Then we present detailed protocols for the generation of experimental mice for GIFM studies, the induction of cell labeling by tamoxifen treatment, and the detection of marked cells in fixed and live tissues. Each section also provides a discussion of limitations and common pitfalls of GIFM experiments. Most of the protocols can be easily adapted to other developmental stages, cell types, Cre recombinases, and reporter transgenes and, thus, can be used as general guidelines for GIFM studies in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feil R (2007) Conditional somatic mutagenesis in the mouse using site-specific recombinases. Handb Exp Pharmacol 178:3–28

    Article  CAS  PubMed  Google Scholar 

  2. Glaser S, Anastassiadis K, Stewart AF (2005) Current issues in mouse genome engineering. Nat Genet 37(11):1187–1193

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Otin AL, Guillou F (2006) Mammalian genome targeting using site-specific recombinases. Front Biosci 11:1108–1136

    Article  CAS  PubMed  Google Scholar 

  4. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71

    Article  CAS  PubMed  Google Scholar 

  5. Feil R, Brocard J, Mascrez B et al (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93(20):10887–10890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Feil R, Wagner J, Metzger D et al (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237(3):752–757

    Article  CAS  PubMed  Google Scholar 

  7. Metzger D, Clifford J, Chiba H et al (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92(15):6991–6995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zhang Y, Riesterer C, Ayrall AM et al (1996) Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res 24(4):543–548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Indra AK, Warot X, Brocard J et al (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 27(22):4324–4327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kühbandner S, Brummer S, Metzger D et al (2000) Temporally controlled somatic mutagenesis in smooth muscle. Genesis 28(1):15–22

    Article  PubMed  Google Scholar 

  11. Robinson SP, Langan-Fahey SM, Johnson DA et al (1991) Metabolites, pharmacodynamics, and pharmacokinetics of tamoxifen in rats and mice compared to the breast cancer patient. Drug Metab Dispos 19(1):36–43

    CAS  PubMed  Google Scholar 

  12. Furr BJ, Jordan VC (1984) The pharmacology and clinical uses of tamoxifen. Pharmacol Ther 25(2):127–205

    Article  CAS  PubMed  Google Scholar 

  13. Birling MC, Gofflot F, Warot X (2009) Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol 561:245–263

    Article  CAS  PubMed  Google Scholar 

  14. Feil S, Valtcheva N, Feil R (2009) Inducible Cre mice. Methods Mol Biol 530:343–363

    Article  CAS  PubMed  Google Scholar 

  15. Friedel RH, Wurst W, Wefers B et al (2011) Generating conditional knockout mice. Methods Mol Biol 693:205–231

    Article  CAS  PubMed  Google Scholar 

  16. O’Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251(4999):1351–1355

    Article  PubMed  Google Scholar 

  17. Lewandoski M (2007) Analysis of mouse development with conditional mutagenesis. Handb Exp Pharmacol 178:235–262

    Article  CAS  PubMed  Google Scholar 

  18. Dymecki SM, Tomasiewicz H (1998) Using Flp-recombinase to characterize expansion of Wnt1-expressing neural progenitors in the mouse. Dev Biol 201(1):57–65

    Article  CAS  PubMed  Google Scholar 

  19. Zinyk DL, Mercer EH, Harris E et al (1998) Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr Biol 8(11):665–668

    Article  CAS  PubMed  Google Scholar 

  20. Dymecki SM, Kim JC (2007) Molecular neuroanatomy’s “three Gs”: a primer. Neuron 54(1):17–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Joyner AL, Zervas M (2006) Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev Dyn 235(9):2376–2385

    Article  PubMed  Google Scholar 

  22. Ahn S, Joyner AL (2004) Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118(4):505–516

    Article  CAS  PubMed  Google Scholar 

  23. Harfe BD, Scherz PJ, Nissim S et al (2004) Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118(4):517–528

    Article  CAS  PubMed  Google Scholar 

  24. Gothert JR, Gustin SE, van Eekelen JA et al (2004) Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood 104(6):1769–1777

    Article  PubMed  Google Scholar 

  25. Laugwitz KL, Moretti A, Lam J et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433(7026):647–653

    Article  CAS  PubMed  Google Scholar 

  26. Snippert HJ, Clevers H (2011) Tracking adult stem cells. EMBO Rep 12(2):113–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Feil S, Hofmann F, Feil R (2004) SM22alpha modulates vascular smooth muscle cell phenotype during atherogenesis. Circ Res 94(7):863–865

    Article  CAS  PubMed  Google Scholar 

  28. Wolfsgruber W, Feil S, Brummer S et al (2003) A proatherogenic role for cGMP-dependent protein kinase in vascular smooth muscle cells. Proc Natl Acad Sci U S A 100(23):13519–13524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Brown A, Brown S, Ellisor D et al (2009) A practical approach to genetic inducible fate mapping: a visual guide to mark and track cells in vivo. J Vis Exp 34. doi:10.3791/1687

  30. Petersson M, Frances D, Niemann C (2013) Lineage tracing of hair follicle stem cells in epidermal whole mounts. Methods Mol Biol 989:45–60

    Article  PubMed  Google Scholar 

  31. Friedrich G, Soriano P (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5(9):1513–1523

    Article  CAS  PubMed  Google Scholar 

  32. Zambrowicz BP, Imamoto A, Fiering S et al (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci U S A 94(8):3789–3794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199

    Article  CAS  PubMed  Google Scholar 

  34. Chen CM, Krohn J, Bhattacharya S et al (2011) A comparison of exogenous promoter activity at the ROSA26 locus using a PhiC31 integrase mediated cassette exchange approach in mouse ES cells. PLoS One 6(8):e23376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Nyabi O, Naessens M, Haigh K et al (2009) Efficient mouse transgenesis using Gateway-compatible ROSA26 locus targeting vectors and F1 hybrid ES cells. Nucleic Acids Res 37(7):e55

    Article  PubMed Central  PubMed  Google Scholar 

  36. Muzumdar MD, Tasic B, Miyamichi K et al (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605

    Article  CAS  PubMed  Google Scholar 

  37. Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Snippert HJ, van der Flier LG, Sato T et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144

    Article  CAS  PubMed  Google Scholar 

  39. Duffield JS, Humphreys BD (2011) Origin of new cells in the adult kidney: results from genetic labeling techniques. Kidney Int 79(5):494–501

    Article  PubMed  Google Scholar 

  40. Zhang SH, Reddick RL, Piedrahita JA et al (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258(5081):468–471

    Article  CAS  PubMed  Google Scholar 

  41. Lakso M, Pichel JG, Gorman JR et al (1996) Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci U S A 93(12):5860–5865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kawamoto S, Niwa H, Tashiro F et al (2000) A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Cre-mediated recombination. FEBS Lett 470(3):263–268

    Article  CAS  PubMed  Google Scholar 

  43. Erdmann G, Schutz G, Berger S (2007) Inducible gene inactivation in neurons of the adult mouse forebrain. BMC Neurosci 8:63

    Article  PubMed Central  PubMed  Google Scholar 

  44. Lu X, Agasti SS, Vinegoni C et al (2012) Optochemogenetics (OCG) allows more precise control of genetic engineering in mice with CreER regulators. Bioconjug Chem 23(9):1945–1951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Brake RL, Simmons PJ, Begley CG (2004) Cross-contamination with tamoxifen induces transgene expression in non-exposed inducible transgenic mice. Genet Mol Res 3(4):456–462

    CAS  PubMed  Google Scholar 

  46. Wong MH, Saam JR, Stappenbeck TS et al (2000) Genetic mosaic analysis based on Cre recombinase and navigated laser capture microdissection. Proc Natl Acad Sci U S A 97(23):12601–12606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Mao X, Fujiwara Y, Chapdelaine A et al (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97(1):324–326

    Article  CAS  PubMed  Google Scholar 

  48. Srinivas S, Watanabe T, Lin CS et al (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Yamamoto M, Shook NA, Kanisicak O et al (2009) A multifunctional reporter mouse line for Cre- and FLP-dependent lineage analysis. Genesis 47(2):107–114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the members of the Feil laboratory for critical discussion. Work in the authors’ laboratory was supported by grants from VolkswagenStiftung, Deutsche Forschungsgemeinschaft, fortüne-Programm der Medizinischen Fakultät der Universität Tübingen, and Dr. Karl Kuhn-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Feil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Feil, S., Krauss, J., Thunemann, M., Feil, R. (2014). Genetic Inducible Fate Mapping in Adult Mice Using Tamoxifen-Dependent Cre Recombinases. In: Singh, S., Coppola, V. (eds) Mouse Genetics. Methods in Molecular Biology, vol 1194. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1215-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1215-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1214-8

  • Online ISBN: 978-1-4939-1215-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics