Skip to main content

Conditional Somatic Mutagenesis in the Mouse Using Site-Specific Recombinases

  • Chapter
Conditional Mutagenesis: An Approach to Disease Models

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 178))

Abstract

In the last decade, site-specific recombinases (SSRs), such as Cre and Flp, have emerged as indispensable tools for the precise in vivo manipulation of the mouse genome. It is now feasible to control, in space and time, the onset of gene knockouts in almost any tissue of the mouse, thus greatly facilitating the creation of sophisticated animal models for human disease and drug development. This review describes the basic principles and current status of the SSR technology, with a focus on strategies for conditional somatic mutagenesis using the Cre/lox system and ligand-activated Cre recombinases. Practical hints for generating and analysing conditional mouse mutants will be given and exciting novel applications of the SSR technology will be discussed, such as cell fate mapping and the combined use of Cre, Flp and other biotechnological tools. It will be shown how genetic manipulation of the mouse by site-specific recombination can provide new solutions to old problems in the analysis of human physiology and pathophysiology and how it can be employed for drug discovery and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn S, Joyner AL (2004) Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118:505–516

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973

    Article  PubMed  CAS  Google Scholar 

  • Andreas S, Schwenk F, Kuter-Luks B, Faust N, Kuhn R (2002) Enhanced efficiency through nuclear localization signal fusion on phage PhiC31-integrase: activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic Acids Res 30:2299–2306

    Article  PubMed  CAS  Google Scholar 

  • Araki K, Araki M, Miyazaki J, Vassalli P (1995) Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc Natl Acad Sci U S A 92:160–164

    Article  PubMed  CAS  Google Scholar 

  • Belteki G, Gertsenstein M, Ow DW, Nagy A (2003) Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol 21:321–324

    Article  PubMed  CAS  Google Scholar 

  • Belteki G, Haigh J, Kabacs N, Haigh K, Sison K, Costantini F, Whitsett J, Quaggin SE, Nagy A (2005) Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res 33:e51

    Article  PubMed  Google Scholar 

  • Berger S, Bujard H (2004) Novel mouse models in biomedical research: the power of dissecting pathways by quantitative control of gene activities. In: Offermanns S, Hein L (eds) Handb Exp Pharmacol, vol 159. Springer-Verlag, Berlin New York Heidelberg, pp 3–30

    Google Scholar 

  • Bosenberg M, Muthusamy V, Curley DP, Wang Z, Hobbs C, Nelson B, Nogueira C, Horner JW, 2nd, Depinho R, Chin L (2006) Characterization of melanocyte-specific inducible Cre recombinase transgenic mice. Genesis 44:262–267

    Article  PubMed  CAS  Google Scholar 

  • Branda CS, Dymecki SM (2004) Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    Article  PubMed  CAS  Google Scholar 

  • Brocard J, Feil R, Chambon P, Metzger D (1998) A chimeric Cre recombinase inducible by synthetic, but not by natural ligands of the glucocorticoid receptor. Nucleic Acids Res 26:4086–4090

    Article  PubMed  CAS  Google Scholar 

  • Bruning JC, Michael MD, Winnay JN, Hayashi T, Horsch D, Accili D, Goodyear LJ, Kahn CR (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2:559–569

    Article  PubMed  CAS  Google Scholar 

  • Buch T, Heppner FL, Tertilt C, Heinen TJ, Kremer M, Wunderlich FT, Jung S, Waisman A (2005) A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2:419–426

    Article  PubMed  CAS  Google Scholar 

  • Buchholz F, Angrand PO, Stewart AF (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16:657–662

    Article  PubMed  CAS  Google Scholar 

  • Buchholz F, Ringrose L, Angrand PO, Rossi F, Stewart AF (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24:4256–4262

    Article  PubMed  CAS  Google Scholar 

  • Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512

    Article  PubMed  CAS  Google Scholar 

  • Casanova E, Lemberger T, Fehsenfeld S, Mantamadiotis T, Schutz G (2003) Alpha complementation in the Cre recombinase enzyme. Genesis 37:25–29

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Woo SL (2005) Complete and persistent phenotypic correction of phenylketonuria in mice by site-specific genome integration of murine phenylalanine hydroxylase cDNA. Proc Natl Acad Sci U S A 102:15581–15586

    Article  PubMed  CAS  Google Scholar 

  • Chien KR (1996) Genes and physiology: molecular physiology in genetically engineered animals. J Clin Invest 97:901–909

    PubMed  CAS  Google Scholar 

  • Copeland NG, Jenkins NA, Court DL (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2:769–779

    Article  PubMed  CAS  Google Scholar 

  • Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8:1323–1326

    Article  PubMed  CAS  Google Scholar 

  • Diaz V, Rojo F, Martinez AC, Alonso JC, Bernad A (1999) The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. J Biol Chem 274:6634–6640

    Article  PubMed  CAS  Google Scholar 

  • Dobie K, Mehtali M, McClenaghan M, Lathe R (1997) Variegated gene expression in mice. Trends Genet 13:127–130

    Article  PubMed  CAS  Google Scholar 

  • Dymecki SM, Tomasiewicz H (1998) Using Flp-recombinase to characterize expansion of Wnt1-expressing neural progenitors in the mouse. Dev Biol 201:57–65

    Article  PubMed  CAS  Google Scholar 

  • el Marjou F, Janssen KP, Chang BH, Li M, Hindie V, Chan L, Louvard D, Chambon P, Metzger D, Robine S (2004) Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39:186–193

    Article  PubMed  CAS  Google Scholar 

  • Erickson RP (2003) Somatic gene mutation and human disease other than cancer. Mutat Res 543:125–36

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93:10887–10890

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757

    Article  PubMed  CAS  Google Scholar 

  • Feil S, Hofmann F, Feil R (2004) SM22alpha modulates vascular smooth muscle cell phenotype during atherogenesis. Circ Res 94:863–865

    Article  PubMed  CAS  Google Scholar 

  • Forde A, Constien R, Grone HJ, Hammerling G, Arnold B (2002) Temporal Cre-mediated recombination exclusively in endothelial cells using Tie2 regulatory elements. Genesis 33:191–197

    Article  PubMed  CAS  Google Scholar 

  • Forster A, Pannell R, Drynan LF, McCormack M, Collins EC, Daser A, Rabbitts TH (2003) Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell 3:449–458

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Otin AL, Guillou F (2006) Mammalian genome targeting using site-specific recombinases. Front Biosci 11:1108–1136

    Article  PubMed  CAS  Google Scholar 

  • Giraldo P, Montoliu L (2001) Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res 10:83–103

    Article  PubMed  CAS  Google Scholar 

  • Glaser S, Anastassiadis K, Stewart AF (2005) Current issues in mouse genome engineering. Nat Genet 37:1187–1193

    Article  PubMed  CAS  Google Scholar 

  • Gothert JR, Gustin SE, van Eekelen JA, Schmidt U, Hall MA, Jane SM, Green AR, Gottgens B, Izon DJ, Begley CG (2004) Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood 104:1769–1777

    Article  PubMed  CAS  Google Scholar 

  • Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of Site-Specific Recombination. Annu Rev Biochem 75:567–605

    Article  PubMed  CAS  Google Scholar 

  • Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265:103–106

    Article  PubMed  CAS  Google Scholar 

  • Gu H, Zou YR, Rajewsky K (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73:1155–1164

    Article  PubMed  CAS  Google Scholar 

  • Harfe BD, Scherz PJ, Nissim S, Tian H, McMahon AP, Tabin CJ (2004) Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118:517–528

    Article  PubMed  CAS  Google Scholar 

  • Herault Y, Rassoulzadegan M, Cuzin F, Duboule D (1998) Engineering chromosomes in mice through targeted meiotic recombination (TAMERE). Nat Genet 20:381–384

    Article  PubMed  CAS  Google Scholar 

  • Hirrlinger PG, Scheller A, Braun C, Hirrlinger J, Kirchhoff F (2006) Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen-inducible DNA recombinase variant CreERT2. Glia 54:11–20

    Article  PubMed  Google Scholar 

  • Hirst GL, Balmain A (2004) Forty years of cancer modelling in the mouse. Eur J Cancer 40:1974–1980

    Article  PubMed  CAS  Google Scholar 

  • Hoess RH, Abremski K (1990) The Cre-lox recombination system. In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology, vol 4. Springer-Verlag, Berlin New York Heidelberg, pp 99–109

    Google Scholar 

  • Hunter NL, Awatramani RB, Farley FW, Dymecki SM (2005) Ligand-activated Flpe for temporally regulated gene modifications. Genesis 41:99–109

    Article  PubMed  CAS  Google Scholar 

  • Imai T, Jiang M, Chambon P, Metzger D (2001) Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor alpha mediated by a tamoxifen-inducible chimeric Cre recombinase (Cre-ERT2) in adipocytes. Proc Natl Acad Sci U S A 98:224–228

    Article  PubMed  CAS  Google Scholar 

  • Imayoshi I, Ohtsuka T, Metzger D, Chambon P, Kageyama R (2006) Temporal regulation of Cre recombinase activity in neural stem cells. Genesis 44:233–238

    Article  PubMed  CAS  Google Scholar 

  • Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, Metzger D (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 27:4324–4327

    Article  PubMed  CAS  Google Scholar 

  • Ireland H, Kemp R, Houghton C, Howard L, Clarke AR, Sansom OJ, Winton DJ (2004) Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. Gastroenterology 126:1236–1246

    Article  PubMed  CAS  Google Scholar 

  • Ivanova A, Signore M, Caro N, Greene ND, Copp AJ, Martinez-Barbera JP (2005) In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis 43:129–135

    Article  PubMed  CAS  Google Scholar 

  • Jo D, Nashabi A, Doxsee C, Lin Q, Unutmaz D, Chen J, Ruley HE (2001) Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nat Biotechnol 19:929–933

    Article  PubMed  CAS  Google Scholar 

  • Jonkers J, Berns A (2002) Conditional mouse models of sporadic cancer. Nat Rev Cancer 2:251–265

    Article  PubMed  CAS  Google Scholar 

  • Joshi SK, Hashimoto K, Koni PA (2002) Induced DNA recombination by Cre recombinase protein transduction. Genesis 33:48–54

    Article  PubMed  CAS  Google Scholar 

  • Jullien N, Sampieri F, Enjalbert A, Herman JP (2003) Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. Nucleic Acids Res 31:e131

    Article  PubMed  CAS  Google Scholar 

  • Kellendonk C, Tronche F, Casanova E, Anlag K, Opherk C, Schutz G (1999) Inducible site-specific recombination in the brain. J Mol Biol 285:175–182

    Article  PubMed  CAS  Google Scholar 

  • Kellendonk C, Tronche F, Monaghan AP, Angrand PO, Stewart F, Schutz G (1996) Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res 24:1404–1411

    Article  PubMed  CAS  Google Scholar 

  • Kemp R, Ireland H, Clayton E, Houghton C, Howard L, Winton DJ (2004) Elimination of background recombination: somatic induction of Cre by combined transcriptional regulation and hormone binding affinity. Nucleic Acids Res 32:e92

    Article  PubMed  Google Scholar 

  • Kim JE, Nakashima K, de Crombrugghe B (2004) Transgenic mice expressing a ligand-inducible cre recombinase in osteoblasts and odontoblasts: a new tool to examine physiology and disease of postnatal bone and tooth. Am J Pathol 165:1875–1882

    PubMed  CAS  Google Scholar 

  • Kuhbandner S, Brummer S, Metzger D, Chambon P, Hofmann F, Feil R (2000) Temporally controlled somatic mutagenesis in smooth muscle. Genesis 28:15–22

    Article  PubMed  CAS  Google Scholar 

  • Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339

    Article  PubMed  CAS  Google Scholar 

  • Kyrkanides S, Miller JH, Bowers WJ, Federoff HJ (2003) Transcriptional and posttranslational regulation of Cre recombinase by RU486 as the basis for an enhanced inducible expression system. Mol Ther 8:790–795

    Article  PubMed  CAS  Google Scholar 

  • Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A 89:6232–6236

    Article  PubMed  CAS  Google Scholar 

  • Lantinga-van Leeuwen IS, Leonhard WN, van de Wal A, Breuning MH, Verbeek S, de Heer E, Peters DJ (2006) Transgenic mice expressing tamoxifen-inducible Cre for somatic gene modification in renal epithelial cells. Genesis 44:225–232

    Article  PubMed  CAS  Google Scholar 

  • Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin LZ, Cai CL, Lu MM, Reth M, Platoshyn O, Yuan JX, Evans S, Chien KR (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653

    Article  PubMed  CAS  Google Scholar 

  • Le Y, Miller JL, Sauer B (1999) GFPcre fusion vectors with enhanced expression. Anal Biochem 270:334–336

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Ristow M, Lin X, White MF, Magnuson MA, Hennighausen L (2006) RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. J Biol Chem 281:2649–2653

    Article  PubMed  CAS  Google Scholar 

  • Leneuve P, Colnot S, Hamard G, Francis F, Niwa-Kawakita M, Giovannini M, Holzenberger M (2003) Cre-mediated germline mosaicism: a new transgenic mouse for the selective removal of residual markers from tri-lox conditional alleles. Nucleic Acids Res 31:e21

    Article  PubMed  CAS  Google Scholar 

  • Leone DP, Genoud S, Atanasoski S, Grausenburger R, Berger P, Metzger D, Macklin WB, Chambon P, Suter U (2003) Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol Cell Neurosci 22:430–440

    Article  PubMed  CAS  Google Scholar 

  • Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2:743–755

    Article  PubMed  CAS  Google Scholar 

  • Li M, Indra AK, Warot X, Brocard J, Messaddeq N, Kato S, Metzger D, Chambon P (2000) Skin abnormalities generated by temporally controlled RXRalpha mutations in mouse epidermis. Nature 407:633–636

    Article  PubMed  CAS  Google Scholar 

  • Liggett SB (2004) Genetically modified mouse models for pharmacogenomic research. Nat Rev Genet 5:657–663

    Article  PubMed  CAS  Google Scholar 

  • Link KH, Shi Y, Koh JT (2005) Light activated recombination. J Am Chem Soc 127:13088–13089

    Article  PubMed  CAS  Google Scholar 

  • Logie C, Stewart AF (1995) Ligand-regulated site-specific recombination. Proc Natl Acad Sci U S A 92:5940–5944

    Article  PubMed  CAS  Google Scholar 

  • Loonstra A, Vooijs M, Beverloo HB, Allak BA, van Drunen E, Kanaar R, Berns A, Jonkers J (2001) Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci U S A 98:9209–9214

    Article  PubMed  CAS  Google Scholar 

  • Macchiarini F, Manz MG, Palucka AK, Shultz LD (2005) Humanized mice: are we there yet? J Exp Med 202:1307–1311

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Barrow J, McMahon J, Vaughan J, McMahon AP (2005) An ES cell system for rapid, spatial and temporal analysis of gene function in vitro and in vivo. Nucleic Acids Res 33:e155

    Article  PubMed  CAS  Google Scholar 

  • Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92:6991–6995

    Article  PubMed  CAS  Google Scholar 

  • Metzger D, Feil R (1999) Engineering the mouse genome by site-specific recombination. Curr Opin Biotechnol 10:470–476

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Tanaka K, Buffo A, Wurst W, Kuhn R, Gotz M (2006) Inducible gene deletion in astroglia and radial glia-A valuable tool for functional and lineage analysis. Glia 54:21–34

    Article  PubMed  Google Scholar 

  • Muyrers JP, Zhang Y, Stewart AF (2001) Techniques: Recombinogenic engineering-new options for cloning and manipulating DNA. Trends Biochem Sci 26:325–331

    Article  PubMed  CAS  Google Scholar 

  • Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    Article  PubMed  CAS  Google Scholar 

  • Offermanns S, Hein L (eds) (2004) Transgenic models in pharmacology. Handb Exp Pharmacol, vol 159. Springer-Verlag, Berlin New York Heidelberg

    Google Scholar 

  • O’Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251:1351–1355

    Article  PubMed  CAS  Google Scholar 

  • Olivares EC, Hollis RP, Chalberg TW, Meuse L, Kay MA, Calos MP (2002) Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol 20:1124–1128

    Article  PubMed  CAS  Google Scholar 

  • Olson EN, Arnold HH, Rigby PW, Wold BJ (1996) Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85:1–4

    Article  PubMed  CAS  Google Scholar 

  • Orban PC, Chui D, Marth JD (1992) Tissue-and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 89:6861–6865

    Article  PubMed  CAS  Google Scholar 

  • Peitz M, Pfannkuche K, Rajewsky K, Edenhofer F (2002) Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc Natl Acad Sci U S A 99:4489–4494

    Article  PubMed  CAS  Google Scholar 

  • Picard D (1994) Regulation of protein function through expression of chimaeric proteins. Curr Opin Biotechnol 5:511–515

    Article  PubMed  CAS  Google Scholar 

  • Prosser H, Rastan S (2003) Manipulation of the mouse genome: a multiple impact resource for drug discovery and development. Trends Biotechnol 21:224–232

    Article  PubMed  CAS  Google Scholar 

  • Randolph DA, Verbsky JW, Yang L, Fang Y, Hakem R, Fields LE (1996) PCR-based gene targeting of the inducible nitric oxide synthase (NOS2) locus in murine ES cells, a new and more cost-effective approach. Transgenic Res 5:413–420

    Article  PubMed  CAS  Google Scholar 

  • Ristevski S (2005) Making better transgenic models: conditional, temporal, and spatial approaches. Mol Biotechnol 29:153–163

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25:139–140

    Article  PubMed  CAS  Google Scholar 

  • Rojo F, Alonso JC (1994) A novel site-specific recombinase encoded by the Streptococcus pyogenes plasmid pSM19035. J Mol Biol 238:159–172

    Article  PubMed  CAS  Google Scholar 

  • Sadowski P (1986) Site-specific recombinases: changing partners and doing the twist. J Bacteriol 165:341–347

    PubMed  CAS  Google Scholar 

  • Sauer B, McDermott J (2004) DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res 32:6086–6095

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EE, Taylor DS, Prigge JR, Barnett S, Capecchi MR (2000) Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc Natl Acad Sci U S A 97:13702–13707

    Article  PubMed  CAS  Google Scholar 

  • Schnutgen F, De-Zolt S, Van Sloun P, Hollatz M, Floss T, Hansen J, Altschmied J, Seisenberger C, Ghyselinck NB, Ruiz P, Chambon P, Wurst W, von Melchner H (2005) Genome-wide production of multipurpose alleles for the functional analysis of the mouse genome. Proc Natl Acad Sci U S A 102:7221–7226

    Article  PubMed  CAS  Google Scholar 

  • Schonig K, Schwenk F, Rajewsky K, Bujard H (2002) Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res 30:e134

    Article  PubMed  Google Scholar 

  • Schuler M, Ali F, Metzger E, Chambon P, Metzger D (2005) Temporally controlled targeted somatic mutagenesis in skeletal muscles of the mouse. Genesis 41:165–170

    Article  PubMed  CAS  Google Scholar 

  • Schuler M, Dierich A, Chambon P, Metzger D (2004) Efficient temporally controlled targeted somatic mutagenesis in hepatocytes of the mouse. Genesis 39:167–172

    Article  PubMed  CAS  Google Scholar 

  • Seibler J, Zevnik B, Kuter-Luks B, Andreas S, Kern H, Hennek T, Rode A, Heimann C, Faust N, Kauselmann G, Schoor M, Jaenisch R, Rajewsky K, Kuhn R, Schwenk F (2003) Rapid generation of inducible mouse mutants. Nucl Acids Res 31:e12

    Article  PubMed  CAS  Google Scholar 

  • Servert P, Garcia-Castro J, Diaz V, Lucas D, Gonzalez MA, Martinez AC, Bernad A (2006) Inducible model for beta-six-mediated site-specific recombination in mammalian cells. Nucleic Acids Res 34:e1

    Article  PubMed  CAS  Google Scholar 

  • Shimshek DR, Kim J, Hubner MR, Spergel DJ, Buchholz F, Casanova E, Stewart AF, Seeburg PH, Sprengel R (2002) Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32:19–26

    Article  PubMed  CAS  Google Scholar 

  • Sohal DS, Nghiem M, Crackower MA, Witt SA, Kimball TR, Tymitz KM, Penninger JM, Molkentin JD (2001) Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ Res 89:20–25

    PubMed  CAS  Google Scholar 

  • Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain [letter]. Nat Genet 21:70–71

    Article  PubMed  CAS  Google Scholar 

  • Spitz F, Herkenne C, Morris MA, Duboule D (2005) Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes. Nat Genet 37:889–893

    Article  PubMed  CAS  Google Scholar 

  • Steele PM, Medina JF, Nores WL, Mauk MD (1998) Using genetic mutations to study the neural basis of behavior. Cell 95:879–882

    Article  PubMed  CAS  Google Scholar 

  • Sternberg N, Hamilton D, Austin S, Yarmolinsky M, Hoess R (1981) Site-specific recombination and its role in the life cycle of bacteriophage P1. Cold Spring Harb Symp Quant Biol 45:297–309

    PubMed  CAS  Google Scholar 

  • St-Onge L, Furth PA, Gruss P (1996) Temporal control of the Cre recombinase in transgenic mice by a tetracycline responsive promoter. Nucleic Acids Res 24:3875–3877

    Article  PubMed  CAS  Google Scholar 

  • Testa G, Zhang Y, Vintersten K, Benes V, Pijnappel WW, Chambers I, Smith AJ, Smith AG, Stewart AF (2003) Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat Biotechnol 21:443–447

    Article  PubMed  CAS  Google Scholar 

  • Thorpe HM, Smith MC (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A 95:5505–5510

    Article  PubMed  CAS  Google Scholar 

  • Tronche F, Casanova E, Turiault M, Sahly I, Kellendonk C (2002) When reverse genetics meets physiology: the use of site-specific recombinases in mice. FEBS Lett 529:116–121

    Article  PubMed  CAS  Google Scholar 

  • Van Duyne GD (2001) A structural view of cre-loxp site-specific recombination. Annu Rev Biophys Biomol Struct 30:87–104

    Article  PubMed  Google Scholar 

  • Vasioukhin V, Degenstein L, Wise B, Fuchs E (1999) The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc Natl Acad Sci U S A 96:8551–8556

    Article  PubMed  CAS  Google Scholar 

  • Vetter D, Andrews BJ, Roberts-Beatty L, Sadowski PD (1983) Site-specific recombination of yeast 2-micron DNA in vitro. Proc Natl Acad Sci U S A 80:7284–7288

    Article  PubMed  CAS  Google Scholar 

  • Vooijs M, Jonkers J, Berns A (2001) A highly efficient ligand-regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Reports 2:292–297

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A, Rustin P, Bruning JC, Kahn CR, Clayton DA, Barsh GS, Thoren P, Larsson NG (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21:133–137

    Article  PubMed  CAS  Google Scholar 

  • Wen F, Cecena G, Munoz-Ritchie V, Fuchs E, Chambon P, Oshima RG (2003) Expression of conditional cre recombinase in epithelial tissues of transgenic mice. Genesis 35:100–106

    Article  PubMed  CAS  Google Scholar 

  • Wolfsgruber W, Feil S, Brummer S, Kuppinger O, Hofmann F, Feil R (2003) A proatherogenic role for cGMP-dependent protein kinase in vascular smooth muscle cells. Proc Natl Acad Sci U S A 100:13519–13524

    Article  PubMed  CAS  Google Scholar 

  • Wood AJ, Darbyshire J (2006) Injury to research volunteers-the clinical-research nightmare. N Engl J Med 354:1869–1871

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich FT, Wildner H, Rajewsky K, Edenhofer F (2001) New variants of inducible Cre recombinase: a novel mutant of Cre-PR fusion protein exhibits enhanced sensitivity and an expanded range of inducibility. Nucleic Acids Res 29:e47

    Article  PubMed  CAS  Google Scholar 

  • Wynshaw-Boris A (1996) Model mice and human disease. Nat Genet 13:259–260

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Wagner KU, Larson D, Weaver Z, Li C, Ried T, Hennighausen L, Wynshaw-Boris A, Deng CX (1999) Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 22:37–43

    Article  PubMed  CAS  Google Scholar 

  • Yajima I, Belloir E, Bourgeois Y, Kumasaka M, Delmas V, Larue L (2006) Spatiotemporal gene control by the Cre-ERT2 system in melanocytes. Genesis 44:34–43

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Seed B (2003) Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nat Biotechnol 21:447–451

    Article  PubMed  CAS  Google Scholar 

  • Yu HM, Liu B, Chiu SY, Costantini F, Hsu W (2005) Development of a unique system for spatiotemporal and lineage-specific gene expression in mice. Proc Natl Acad Sci U S A 102:8615–8620

    Article  PubMed  CAS  Google Scholar 

  • Yu J, McMahon AP (2006) Reproducible and inducible knockdown of gene expression in mice. Genesis 44:252–261

    Article  PubMed  CAS  Google Scholar 

  • Zadelaar SM, Boesten LS, Pires NM, van Nieuwkoop A, Biessen EA, Jukema W, Havekes LM, van Vlijmen BJ, Willems van Dijk K (2006) Local cre-mediated gene recombination in vascular smooth muscle cells in mice. Transgenic Res 15:31–36

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Riesterer C, Ayrall AM, Sablitzky F, Littlewood TD, Reth M (1996) Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res 24:543–548

    Article  PubMed  CAS  Google Scholar 

  • Zinyk DL, Mercer EH, Harris E, Anderson DJ, Joyner AL (1998) Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr Biol 8:665–668

    Article  PubMed  CAS  Google Scholar 

  • Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with double markers in mice. Cell 121:479–492

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feil, R. (2007). Conditional Somatic Mutagenesis in the Mouse Using Site-Specific Recombinases. In: Feil, R., Metzger, D. (eds) Conditional Mutagenesis: An Approach to Disease Models. Handbook of Experimental Pharmacology, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35109-2_1

Download citation

Publish with us

Policies and ethics