Skip to main content

Polyphenol Oxidase as a Component of the Inducible Defense Response in Tomato against Herbivores

  • Chapter
Phytochemical Diversity and Redundancy in Ecological Interactions

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 30))

Abstract

Polyphenol Oxidases (PPOs) are copper-containing enzymes that use molecular oxygen to catalyze the oxidation of monophenolic and ortho-diphenolic compounds (Fig. 1). Both PPOs and their phenolic substrates are widespread among higher plants and fungi. The PPO-generated oxidation products, o-qui-nones, spontaneously undergo further reactions to form compounds responsible for the commonly observed browning of injured or diseased plant tissues.1 The physiological significance of PPO and these browning processes in plants has remained enigmatic despite intense research efforts, summarized in numerous reviews.2–7 Although a wealth of studies has attempted to elucidate the role of PPO in pathogen defense,2,8–10 to date the most convincing case has been made for a function of PPO in defense against insects.7,11–14 Interestingly, PPO is important for both insect entrapment and antinutritive defensive mechanisms, suggesting that PPO is a versatile enzyme which may have other, yet to be discovered functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. JOSLYN, M. A., PONTIG, J.D. 1951. Enzyme-catalyzed browning of fruit products. Adv. Food Res. 3: 1–37.

    Article  CAS  Google Scholar 

  2. MAYER, A.M., HAREL, E. 1979. Polyphenol oxidases in plants. Phytochemistry 18: 193–215.

    Article  CAS  Google Scholar 

  3. BUTT, V.S. 1980. Direct oxidases and related enzymes. In: Biochemistry of Plants, Vol 2 (P.K. Stumpf and E.E. Conn, eds.), Academic Press, New York, N.Y., pp. 81–123.

    Google Scholar 

  4. VAUGHN, K.C., DUKE, S.O. 1984. Function of polyphenol oxidase in higher plants. Physiol. Plant. 60: 106–112.

    Article  CAS  Google Scholar 

  5. MAYER, A.M. 1987. Polyphenol oxidases in plants-recent progress. Phytochemistry 26: 11–20.

    Article  Google Scholar 

  6. VAUGHN, K.C., LAX, A.R., DUKE, S.O. 1988. Polyphenol oxidase: the chloroplast enzyme with no established function. Physiol. Plant. 72: 659–665.

    Article  CAS  Google Scholar 

  7. STEFFENS, J.C., HAREL, E., HUNT, M. 1994. Polyphenol oxidase. In: Genetic Engineering of Plant Secondary Metabolism. Rec. Adv. Phytochemistry, Vol 28 (B.E. Ellis et al., eds.), pp. 276–304.

    Google Scholar 

  8. FARKAS, G.L., KIRÁLY, Z. 1962. Role of phenolic compounds in the physiology of plant disease and disease resistance. Phytopathol. Z. 44: 105–150.

    Article  CAS  Google Scholar 

  9. RUBIN, B.A., ARTSIKHOVSKAYA, E.V. 1964. Biochemistry of pathological darkening of plant tissues. Annu. Rev. Phytopath. 2: 157–178.

    Article  CAS  Google Scholar 

  10. KOSUGE, T. 1969. The role of phenolics in host response to infection. Annu. Rev. Phytopath. 7: 195–222.

    Article  CAS  Google Scholar 

  11. FELTON, G.W., DONATO, K., DEL VECCHIO, R.J., DUFFEY, S.S. 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J. Chem. Ecol. 15:2667–2693.

    Article  CAS  Google Scholar 

  12. FELTON G. W., DONATO, K.K., BROADWAY R.M., DUFFEY, S.S. 1992. Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore, Spodoptera exigua. J. Insect Physiol. 38: 277–285.

    Article  CAS  Google Scholar 

  13. DUFFEY, S.S., FELTON, G.W. 1991. Enzymatic antinutritive defenses of the tomato plant against insects. In: Naturally Occurring Pest Bioregulators (P.A. Hedin, ed.), ACS, Washington DC, pp. 167–197.

    Google Scholar 

  14. TINGEY, W. 1991. Potato glandular trichomes. In: Naturally Occurring Pest Bioregulators (P.A. Hedin, ed.), ACS, Washington DC, pp. 128–135.

    Google Scholar 

  15. CONSTABEL, C.P., BERGEY, D.R., RYAN, C.A. 1995. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc. Natl. Acad. Sci. USA 92: 407–411.

    Article  PubMed  CAS  Google Scholar 

  16. PIERPOINT, W.S. 1966. The enzymatic oxidation of chlorogenic acid and some reactions of the quinone produced. Biochem. J. 98: 56–580.

    Google Scholar 

  17. PIERPOINT, W.S., IRELAND, R.J., CARPENTER, J.M. 1977. Modification of proteins during the oxidation of leaf phenols: Reaction of potato virus X with chlorogenoquinone. Phytochemistry 16: 29–34.

    Article  CAS  Google Scholar 

  18. LEATHAM, G.F., KING, V., STAHMANN, M.A. 1980. In vitro polymerization by quiñones or free radicals generated by plant or fungal oxidative enzymes. Phytopathology 70: 1134–1140.

    Article  CAS  Google Scholar 

  19. U, W.S. 1983. Reactions of phenolic compounds with proteins, and their relevance to the production of leaf protein. In: Leaf Protein Concentrates (L. Telek and H.D. Graham, eds.), Avi, Westport, Conn. pp. 235–267.

    Google Scholar 

  20. HURRELL, R.F., FINOT, P.A. 1984. Nutritional consequences of the reactions between proteins and oxidized phenolic acids. In: Nutritional and Toxicological Aspects of Food Safety (M. Friedman, ed.), Plenum Press, New York, pp. 423–435.

    Chapter  Google Scholar 

  21. MACHEIX, J-J., FLEURIET, A., BILLOT, J. 1990. Fruit Phenolics, CRC Press, Boca Raton, Fl, pp. 295–378.

    Google Scholar 

  22. FRIC, F. 1976. Oxidative enzymes. In: Encyclopedia of Plant Physiology, New Series, Vol 4 (R. Heitefuss and H.P. Williams, eds.), Springer-Verlag, N.Y., New York, pp. 616–631.

    Google Scholar 

  23. O’MALLEY, D.M., WHETTEN, R., BAO, W., CHEN, C.-C., SEDEROFF, R.R. 1993. The role of lacease in lignification. Plant J. 4: 751–757.

    Article  Google Scholar 

  24. SARONUO, R., KATO, F., IKENO, T. 1979. Kojic acid, a tyrosinase inhibitor from Aspergillus albus. Agric. Biol. Chem. 43: 1337–1338.

    Google Scholar 

  25. MURAO, S., HINODE, Y., MATSUMARA, E., NUMATA, A., KAWAI, K., OHISHI, H., OYAMA, H., SHIN, T. 1992. A novel lacease inhibitor, N-hydroxyglycine, produced by Penicillium citrinum YH-31. Biosci. Biotech. Biochem. 56: 987–988.

    Article  CAS  Google Scholar 

  26. SHAHAR, T., HENNIG, N., GUTFINGER, T., HAREVEN, D., LIFSCHITZ, E. 1992. The tomato 66.3-kD polyphenol oxidase gene: molecular identification and developmental expression. Plant Cell 4: 135–147.

    PubMed  CAS  Google Scholar 

  27. CARY, J.W., LAX, A.R., FLURKEY, W.H. 1992. Cloning and characterization of cDNAs coding for Vicia faba polyphenol oxidase. Plant Mol. Biol. 20: 245–253.

    Article  PubMed  CAS  Google Scholar 

  28. HUNT, M.D., EANNETTA, N.T., YU, H., NEWMAN, S.M., STEFFENS, J.C. 1993. cDNA cloning and expression of potato polyphenol oxidase. Plant Mol. Biol. 21: 59–68.

    Article  PubMed  CAS  Google Scholar 

  29. NEWMAN, S.M., EANNETTA, T., YU, H., PRINCE, J.P., DE VICENTE, M.C., TANKSLEY, S.D., STEFFENS, J.C. 1993. Organization of the tomato polyphenol oxidase gene family. Plant Mol. Biol. 21: 1035–1051.

    Article  PubMed  CAS  Google Scholar 

  30. DRY, I.B., ROBINSON, S.P. 1994. Molecular cloning and characterization of grape berry polyphenol oxidase. Plant Mol. Biol. 26: 495–502.

    Article  PubMed  CAS  Google Scholar 

  31. JOYIV, R.W., SUGIYAMA, M., FUKUDA, H., KOMAMINE, A. 1995. Cloning and characterization of polyphenol oxidase cDNAs of Phytolacca americana. Plant Physiol. 107: 1083–1089.

    Article  Google Scholar 

  32. HIND, G., MARSHAK, D.R., COUGHLAN, S.J. 1995. Spinach thylakoid polyphenol oxidase: cloning, characterization, and relation to a putative protein kinase. Biochemistry 34: 8157–8164.

    Article  PubMed  CAS  Google Scholar 

  33. BOSS, P.K., GARDNER, R.C., JANSSEN, B.-J., ROSS, G.S. 1995. An apple polyphenol oxidase cDna is up-regulated in wounded tissues. Plant Mol. Biol. 27: 429–433.

    Article  PubMed  CAS  Google Scholar 

  34. THYGESEN, P.W., DRY, I.B., ROBINSON, S.P. 1995. Polyphenol oxidase in potato. Plant Physiol. 109:525–531.

    Article  PubMed  CAS  Google Scholar 

  35. ROBINSON, S.P., DRY, I.B. 1992. Broad bean leaf polyphenol oxidase is a 60-kilodalton protein susceptible to proteolytic cleavage. Plant Physiol. 99: 317–323.

    Article  PubMed  CAS  Google Scholar 

  36. RATHJEN, A.H., ROBINSON, S.P. 1992. Aberrant processing of polyphenol oxidase in a variegated grapevine mutant. Plant Physiol. 99: 1619–1625.

    Article  PubMed  CAS  Google Scholar 

  37. FUJIMOTO, K., OKINO, N., KAWABATA, S-I., IWANAGA, S., OHNISHI, E. 1995. Nucleotide sequence of the cDna encoding the proenzyme of phenol oxidase Al of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92: 7769–7773.

    Article  PubMed  CAS  Google Scholar 

  38. HARBORNE, J.B. 1993. Introduction to Ecological Biochemistry, 4th Edition. Academic Press. London, p.318

    Google Scholar 

  39. ESTERBAUER, H., SCHWARZL, E., HAYN, M. 1977. A rapid assay for catechol oxidase and lacease using 2-nitro-5-thiobenzoic acid. Anal. Biochem. 77: 486–494.

    Article  PubMed  CAS  Google Scholar 

  40. GAUILLARD, F., RICHARD-FORGET, F., NICOLAS, J. 1993. New spectrophotometric assay for polyphenol oxidase activity. Anal. Biochem. 215: 59–65.

    Article  PubMed  CAS  Google Scholar 

  41. YASUNOBU, K.T. 1959. Mode of action of tyrosinase. In: Pigment Cell Biology (M. Gordon, ed.), Academic Press, New York, pp. 583–608.

    Google Scholar 

  42. BERKOWITZ, J.E., COGGON, P., SANDERSON, G.W. 1971. Formation of epitheaflavic acid and its transformation to thearubigins during tea fermentation. Phytochemistry 42: 2271–2278.

    Article  Google Scholar 

  43. DE JESUS RIVAS, N., WHITAKER, J.R. 1973. Purification and some properties of two polyphenol oxidases from bartlett pears. Plant Physiol. 52: 501–507.

    Article  PubMed  Google Scholar 

  44. PATIL, S.S., ZUCKER, M. 1965. Potato phenolases. J. Biol. Chem. 240: 3938–3943.

    PubMed  CAS  Google Scholar 

  45. KOWALSKI, S.P., EANNETTA, N.T., HIRZEL, A.T., STEFFENS, J.C. 1992. Purification and characterization of polyphenol oxidase from glandular trichomes of Solanum berthaultii. Plant Physiol. 100: 677–684.

    Article  PubMed  CAS  Google Scholar 

  46. LANZARINI, G., PIFFERI, P.G., ZAMORANI, A. 1972. Specificity of an o-diphenol oxidase from Prunus avium fruits. Phytochemistry 11: 89–94.

    Article  CAS  Google Scholar 

  47. SWAIN, T., MAPSON, L.W., ROBB, D.A. 1966. Activation of Vicia faba (L.) tyrosinase as effected by denaturing agents. Phytochemistry 5: 469–482.

    Article  CAS  Google Scholar 

  48. MOORE, B.M., FLURKEY, W.H. 1990. Sodium dodecyl sulfate activation of a plant polyphenol oxidase. J. Biol. Chem. 265: 4982–4988.

    PubMed  CAS  Google Scholar 

  49. TOLBERT, N.E. 1973. Activation of polyphenol oxidase of chloroplasts. Plant Physiol. 51: 234–244.

    Article  PubMed  CAS  Google Scholar 

  50. SHERMAN, T.D., VAUGHN, K.C., DUKE, S.O. 1991. A limited survey of the phylogenetic distribution of polyphenol oxidase. Phytochemistry 30: 2499–2506.

    Article  CAS  Google Scholar 

  51. GORDON, M. 1959. Pigment Cell Biology. Academic Press, New York, p. 647

    Google Scholar 

  52. SHERMAN, T.D., LE GARDEUR, T., LAX, A.R. (1995) Implications of the phylogenetic distribution of polyphenol oxidase in plants. In: Enzymatic Browning and Its Prevention (C.Y Lee, J.R. Whitaker, eds.), ACS, Washington, Dc, pp. 103–119.

    Chapter  Google Scholar 

  53. YU, H., KOWALSKI, S.P., STEFFENS, J.C. 1992. Comparison of polyphenol oxidase expression in glandular trichomes of Solanum and Lycopersicon species. Plant Physiol. 100: 1885–189.

    Article  PubMed  CAS  Google Scholar 

  54. CHABANET, A., GOLDBERG, R., CATESSON, A.-M., QUINET-SZELY, M., DELAUNAY, A.M., FAYE, L. 1994. Characterization and localization of a phenoloxidase in mung bean hypocotyl cell walls. Plant Physiol. 106: 1095–1102.

    PubMed  CAS  Google Scholar 

  55. STAFFORD, H.A., GALSTON, A.W. 1970. Ontogeny and hormonal control of polyphenol oxidase isozymes in tobacco pith. Plant Physiol. 46: 763–767.

    Article  PubMed  CAS  Google Scholar 

  56. GENTILE, I.A., FERRARIS, L., MATTA, A. 1988. Variations of phenol oxidase as a consequence of stresses that induce resistance to Fusarium wilt of tomato. J. Phytopath. 122: 45–53.

    Article  Google Scholar 

  57. MUELLER, W.C., BECKMAN, C.H. 1978. Ultrastructural localization of polyphenol oxidase and peroxidase in roots and hypocotyls of cotton seedlings. Can. J. Bot. 56: 1579–1587.

    Article  CAS  Google Scholar 

  58. TAKAI, S., HUBBES, M. 1973. Polyphenol-oxidase activity and growth inhibition of Hypoxy-lon pruinatum (Klotzsche) Cke. by aspen bark meal. Phytopath. Z. 78: 97–108.

    Article  CAS  Google Scholar 

  59. IKEDIOBI, C.O., CHELVARAJAN, R.L., UKOHA, A.I. 1989. Biochemical aspects of wound healing in yams (Dioscorea spp). J. Sci. Food Agric. 48: 131–139.

    Article  CAS  Google Scholar 

  60. ANDERSON, R.A., LOWE, R., VAUGHN, T.A. 1969. Plant phenol and polyphenol oxidase in Nicotiana tabacum during greenhouse growth, field growth and air-curing. Phytochemistry 8:2139–2147.

    Article  Google Scholar 

  61. TAKEO, T., BAKER, J.E. 1973. Changes in multiple forms of polyphenol oxidase during maturation of tea leaves. Phytochemistry 12: 21–24.

    Article  CAS  Google Scholar 

  62. SHEEN, S.J., CALVERT, J. 1969. Studies on polyphenol content, activities and isozymes of polyphenol oxidase and peroxidase during air-curing in three tobacco types. Plant Physiol. 44: 199–204.

    Article  PubMed  CAS  Google Scholar 

  63. MEYER, H-U., BIEHL, B. 1981. Activation of latent phenolase during spinach leaf senescence. Phytochemistry 20: 955–959.

    Article  CAS  Google Scholar 

  64. HYODO, H., URITANI, I. 1966. A study on increase in o-diphenol oxidase activity during incubation of sliced sweet potato tissue. Plant Cell Physiol. 7: 137–144.

    CAS  Google Scholar 

  65. THIPYAPONG, P., HUNT, M.D., STEFFENS, J.C. (1995) Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochemistry 40: 673–676.

    Article  CAS  Google Scholar 

  66. SUGUMARAN, M. 1991. Molecular mechanisms for mammalian melanogenesis; comparison with insect cuticular sclerotization. Febs Lett. 293: 4–10.

    Article  CAS  Google Scholar 

  67. HEARING, V.J., TSUKAMOTO, K. 1991. Enzymatic control of pigmentation in mammals. Faseb J. 5: 2902–2909.

    PubMed  CAS  Google Scholar 

  68. KRAMER, K.J., MORGAN, T.D., HOPKINS, T.L., CHRISTENSEN, A., SCHAEFER, J. 1991. Insect cuticle tanning. In: Naturally Occurring Pest Bioregulators (P.A. Hedin, ed.), Acs, Washington DC, pp. 87–105.

    Chapter  Google Scholar 

  69. SÖDERHALL, K., CERENIUS, L., JOHANSSON, M.W. 1995. The prophenoloxidase activating systemin and its role in invertebrate defense. Ann. N.Y. Acad. Sci. 712: 166–161.

    Google Scholar 

  70. GRIFFITH, T., CONN, E.E. 1973. Biosynthesis of 3,4-dihydroxyphenylalanine in Vicia faba. Phytochemistry 12: 1651–1656.

    Article  CAS  Google Scholar 

  71. DUKE, S.O., VAUGHN, K.C. 1982. Lack of involvement of polyphenol oxidase in ortho-hy-droxylation of phenolic compounds in mung bean seedlings. Physiol. Plant 54: 381–385.

    Article  CAS  Google Scholar 

  72. ESPELIE, K.E., FRANCESCHI, V.R., KOLATTUKUDY P.E., 1986. Immunocytochemical localization and time course of appearance of an anionic peroxidase associated with suberiza-tion in wound-healing potato tuber tissue. Plant Physiol. 81: 487–492.

    Article  PubMed  CAS  Google Scholar 

  73. EGLEY, G.H., PAUL JR., R.N., VAUGHN, K.C., DUKE, S.O. 1983. Role of peroxidase in the development of water-impermeable seed coats in Sida spinosa L. Planta 157: 224–232.

    Article  CAS  Google Scholar 

  74. WIERMANN, R. 1981. Secondary products in cell and tissue culture. In: The Biochemistry of Plants, Vol 7 (P.K. Stumpf and E.E. Conn, eds.), Academic Press, New York, N.Y., pp. 85–116.

    Google Scholar 

  75. FRIEND, J. 1981. Plant phenolics and lignification in plant disease. Prog. Phytochem. 7: 197–261.

    CAS  Google Scholar 

  76. DEVERALL, B.J. 1961. Phenolase and pectic enzyme activity in the chocolate spot disease of beans. Nature 189: 311.

    Article  CAS  Google Scholar 

  77. PATIL, S.S., DIMOND, A.E. 1967. Inhibition of Verticillium polygalacturonase by oxidation products of polyphenols. Phytopathology 57: 492–496.

    PubMed  CAS  Google Scholar 

  78. GREENBERG, J.T., GUO, A., KLESSIG, D.F., AUSUBEL, F.M. 1994. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77: 551–563.

    Article  PubMed  CAS  Google Scholar 

  79. DIETRICH, R.A., DELANEY, T.P., UKNES, S.J., WARD, E.R., RYALS, J.A., DANGLE, J.L. 1994. Arabidopsis mutants simulating disease resistance response. Cell 77: 565–577.

    Article  PubMed  CAS  Google Scholar 

  80. FARKAS, G.L., KIRALY, Z., SOLYMOSY, F. 1960. Role of oxidative metabolism in the localization of plant viruses. Virology 12: 408–421.

    Article  PubMed  CAS  Google Scholar 

  81. HAMPTON, R.E., FULTON, R.W. 1961. The relation of polyphenol oxidase to instability in vitro of prune dwarf and sour cherry necrotic ringspot viruses. Virology 13: 44–52.

    Article  PubMed  CAS  Google Scholar 

  82. PARISH, C.L., ZAITLIN, M., SIEGEL, A. 1965. A study of necrotic lesion formation by tobacco mosaic virus. Virology 26: 413–418.

    Article  PubMed  CAS  Google Scholar 

  83. AVDIUSHKO, S.A., YE, X.S., KUC, J. 1993. Detection of several enzymatic activities in leaf prints of cucumber plants. Physiol. Mol. Plant Path. 42: 441–454.

    Article  CAS  Google Scholar 

  84. FRIEND, J., THORNTON, J.D. 1974. Caffeic acid-o-methyl transferase, phenolase and peroxidase in potato tuber tissue inoculated with Phytophthora infestans. Phytopath. Z. 81: 56–64.

    Article  CAS  Google Scholar 

  85. ARORA, Y.K., BAJAJ, K.L. 1985. Peroxidase and polyphenol oxidase associated with induced resistance of mung bean to Rhizoctonia solani Kuhn. Phytopath. Z. 114: 325–331.

    Article  CAS  Google Scholar 

  86. BASHAN, Y., OKON, Y., HENIS, Y 1985. Peroxidase, polyphenol oxidase, and phenols in relation to resistance against Pseudomonas syringae pv. tomato in tomato plants. Can. J. Bot. 65: 366–372.

    Article  Google Scholar 

  87. KALIA, P., SHARMA, S.K. 1988. Biochemical genetics of powdery mildew resistance in pea. Theor. Appl. Genet. 76: 795–799.

    Article  CAS  Google Scholar 

  88. THUKRAL, S.K., SATIJA, D.R., GUPTA, V.P. 1986. Biochemical genetic basis of downy mildew resistance in pearl millet. Theor. Appl. Genet. 71: 648–651.

    Article  CAS  Google Scholar 

  89. AHL-GOY, P., FELIX, G., MÉTRAUX, J.P., MEINS, JR., F. 1992. Resistance to disease in the hybrid Nicotiana glutinosa × Nicotiana debneyi is associated with high constitutive levels of β-1,3-glucanase, chitinase, peroxidase and polyphenol oxidase. Physiol. Mol. Plant Path. 41: 11–21.

    Article  Google Scholar 

  90. PRYOR, A. 1976. Polyphenol oxidase and hypersensitive resistance: catechol oxidase is not involved in rust resistance in Zea mays L. Physiol. Plant Path. 8: 307–311.

    Article  Google Scholar 

  91. FACCIOLI, G. 1979. Relation of peroxidase, catalase, and polyphenol oxidase to acquired resistance in plants of Chenopodium amaranticolor locally infected by tobacco necrosis virus. Phytopath. Z. 95: 237–249.

    Article  CAS  Google Scholar 

  92. MANIBHUSHANRAO, K., ZUBER, M., MATSUYAMA, N. 1988. Phenol metabolism and plant disease resistance. Acta Physiol. Entom. Hung. 23: 103–114.

    CAS  Google Scholar 

  93. BELL, A.A. 1981. Biochemical mechanisms of disease resistance. Annu. Rev. Plant Physiol. 32:21–81.

    Article  CAS  Google Scholar 

  94. MAUCH, F., MAUCH-MANI, B., BOLLER, T. 1988. Antifungal hydrolases in pea tissue. Ii. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol. 88:936–942.

    Article  PubMed  CAS  Google Scholar 

  95. BACHEM, C.W.B., SPECKMANN, G.-J., VAN DER LINDE, P.C.G., VERHEGGEN, F.T.M., HUNT, M.D., STEFFENS, J.C., ZABEAU, M. 1994. Antisense expression of polyphenol oxidase inhibits enzymatic browning of potato tubers. Bio/technology 12: 1101–1105.

    Article  CAS  Google Scholar 

  96. FELTON, G.W., WORKMAN, J., DUFFEY, S.S. 1992. Avoidance of antinutritive plant defense: role of midgut pH in Colorado Potato beetle. J. Chem. Ecol. 18: 571–583.

    Article  CAS  Google Scholar 

  97. ELLIGER, C.A., WONG, Y., CHAN, B.G., WAISS JR., A.C. 1981. Growth inhibitors in tomato (Lycopersicon) to tomato fruit worm (Heliothis zea). J. Chem. Ecol. 7: 753–758.

    Article  CAS  Google Scholar 

  98. FELTON, G. W., DUFFEY, S.S. 1991. Reassessment of the role of gut alkalinity and detergency in insect herbivory. J. Chem. Ecol. 17: 1821–1836.

    Article  CAS  Google Scholar 

  99. LUDLUM, C.T., FELTON, G.W., DUFFEY, S.S. 1991. Plant Defenses: chlorogenic acid and polyphenol oxidase enhance toxicity of Bacillus thruringiensis subsp. kurstaki to Heliothis zea. J. Chem. Ecol. 17:217–237.

    Article  CAS  Google Scholar 

  100. FELTON, G.W., BROADWAY, R.M., DUFFEY, S.S. 1989. Inactivation of protease inhibitors by plant-derived quinones: complications for host-plant resistance against noctuid herbivores. J. Insect Physiol. 35: 981–990.

    Article  CAS  Google Scholar 

  101. FELTON, G.W., SUMMERS, C.B., MUELLER, A.J. 1994. Oxidative responses in soybean foliage to herbivory by bean leaf beetle and three-cornered alfalfa hopper. J. Chem. Ecol. 20: 639–650.

    Article  CAS  Google Scholar 

  102. PEARCE, G., STRYDOM, D., JOHNSON, S., RYAN, C.A. 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253: 895–898.

    Article  PubMed  CAS  Google Scholar 

  103. FARMER, E.E., RYAN, C.A. 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4: 129–134.

    PubMed  CAS  Google Scholar 

  104. RYAN, C.A. 1992. The search for the proteinase-inhibitor inducing factor, Piif.. Plant Mol. Biol. 19: 123–133.

    Article  PubMed  CAS  Google Scholar 

  105. GREEN, T.R., RYAN, C.A. 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense against insects. Science 175: 776–777.

    Article  PubMed  CAS  Google Scholar 

  106. JOHNSON, R., NARVAEZ, J., AN, G., RYAN, C.A. 1989. Expression of proteinase inhibitors I and Ii in transgenic tobacco plants: Effects on natural defense against Manduca sexta larvae. Proc. Natl. Acad. Sci. USA 86: 9871–9875.

    Article  PubMed  CAS  Google Scholar 

  107. RYAN, C.A. 1990. Proteinase inhibitors in plants: genes for improving defenses against insects and pathogens. Annu. Rev. Phytopath. 28: 425–429.

    Article  CAS  Google Scholar 

  108. BISHOP, P.D., MAKUS, D.J., PEARCE, G., RYAN, C.A. 1981. Proteinase inhibitor-inducing activity in tomato leaves resides in oligosaccharides enzymatically released from cell walls. Proc. Natl. Acad. Sci. USA 78: 3536–3540.

    Article  PubMed  CAS  Google Scholar 

  109. FARMER E.E., RYAN, C.A. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87: 7713–7716.

    Article  PubMed  CAS  Google Scholar 

  110. PeÑA-CORTES, H., Sanchez-Serrano, J.J., Mertens, R., Willmitzer, L. 1989. Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor Ii gene in potato and tomato. Proc. Natl. Acad. Sci. USA 86: 9851–9855.

    Article  PubMed  Google Scholar 

  111. WILDON, D.F., THAIN, J.F., MINCHIN, P.E.H., GUBB, I.R., REILLY, A.J., SKIPPER, Y.D., DOHERTY, H.M., O’dONNELL, P.J., BOWLES, D.J. 1992. Electrical signaling and systemic proteinase inhibitor induction in the wounded plant. Nature 360: 62–65.

    Article  CAS  Google Scholar 

  112. MCGURL, B., PEARCE, G., OROZCO-CARDENAS, M., RYAN, C.A. 1992. Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255: 1570–1573.

    Article  PubMed  CAS  Google Scholar 

  113. OROZCO-CARDENAS, M., MCGURL, B., RYAN, C.A. 1993. Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae. Proc. Natl. Acad. Sci. USA 90: 8273–8276.

    Article  PubMed  CAS  Google Scholar 

  114. MCGURL, B., OROZCO-CARDENAS, M., PEARCE, G., RYAN, C.A. 1994. Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitu-tively induces proteinase inhibitor synthesis. Proc. Natl. Acad. Sci. USA 91: 9799–9802.

    Article  PubMed  CAS  Google Scholar 

  115. GRAHAM J.S., HALL, G., PEARCE, G., RYAN, C.A. 1986. Regulation of synthesis of proteinase inhibitor I and II mRNAs in leaves of wounded tomato plants. Planta 169: 399–405.

    Article  CAS  Google Scholar 

  116. FARMER, E.E., CALDELARI, D., PEARCE, G., WALKER-SIMMONS, M.K., RYAN, C.A. 1994. Diethyldithiocarbamic acid inhibits the octadecanoid signaling pathway for the wound induction of proteinase inhibitors in tomato leaves. Plant Physiol. 106: 337–342.

    CAS  Google Scholar 

  117. DOARES, S.H., NARVAEZ-VASQUEZ, J., CONCONI, A., RYAN, C.A. 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108: 1741–1746.

    PubMed  CAS  Google Scholar 

  118. DOARES, S.H., SYROVETS, T., WEILER, E.W., RYAN, C.A. 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 92: 4095–4098.

    Article  PubMed  CAS  Google Scholar 

  119. LIGHTNER, J., PEARCE, G., RYAN, C.A., BROWSE, J. 1993. Isolation of signaling mutants of tomato (Ly copersicon esculentum). Mol. Gen. Genet. 241: 595–601.

    Article  PubMed  Google Scholar 

  120. HILDER, V.A., GATEHOUSE, A.M.R., SHEERMAN, S.E., BARKER, R.F., BOULTER D. 1987. A novel mechamism of insect resistance engineered into tobacco. Nature 330: 160–163.

    Article  CAS  Google Scholar 

  121. JONGSMA, M.A., BAKKER, P.L., PETERS, J., BOSCH, D., STIEKEMA, W.J. 1995. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitor by induction of gut proteinase activity insensitive to inhibition. Proc. Natl. Acad. Sci. USA 92: 8041–8045.

    Article  PubMed  CAS  Google Scholar 

  122. SWAIN, T. 1977. Secondary compounds as protective agents. Annu. Rev. Plant Physiol. 28: 479–501.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Constabel, C.P., Bergey, D.R., Ryan, C.A. (1996). Polyphenol Oxidase as a Component of the Inducible Defense Response in Tomato against Herbivores. In: Romeo, J.T., Saunders, J.A., Barbosa, P. (eds) Phytochemical Diversity and Redundancy in Ecological Interactions. Recent Advances in Phytochemistry, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1754-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1754-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1756-0

  • Online ISBN: 978-1-4899-1754-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics