Skip to main content
Log in

Plant defenses: Chlorogenic acid and polyphenol oxidase enhance toxicity ofBacillus thuringiensis subsp.kurstaki toHeliothis zea

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Two chemicals implicated in resistance of the tomato plant, chlorogenic acid and polyphenol oxidase, are known to form orthoquinones in damaged plant tissue. Orthoquinones have been reported to alkylate −NH2 and −SH groups of proteins and amino acids, altering solubility, digestibility, and, for some pathogenic viruses, infectivity. Here we explore effects of quinone alkylation on toxicity of an important microbial insecticide,Bacillus thuringiensis subsp.kurstaki (BTk), to larvalHeliothis zea. BTk incubated with these phytochemicals and fed to larvae was more toxic than untreated BTk. Similar but less dramatic results arose when BTk was incubated with polyphenol oxidase alone. Digestibility experiments suggest that alkylation enhanced the solubilization and/or proteolysis of crystal protein in vivo. Implications of our results for compatibility of BTk with host-plant resistance and biological control are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adang, M.J., Firoozabady, E. Klein, J., Deboer, D., Sekar, V., Kemp, J.D., Murray, E., Rocheleau, T.A., Rashka, K., Staffeld, G., Stock, C., Sutton, D., andMerlo, D.J. 1987. Expression of aBacillus thuringiensis insecticidal crystal protein gene in tobacco plants, pp. 345–353,in C.J. Arntzen and C.A. Ryan (eds.). Molecular Strategies for Crop Protection. UCLA Symposia on Molecular and Cellular Biology, Vol. 48. Alan R. Liss, New York.

    Google Scholar 

  • Adkisson, P.L. andDyck, V.A. 1980. Resistant varieties in pest management systems, pp. 233–251,in F.G. Maxwell and P.R. Jennings (eds.). Breeding Plants Resistant to Insects. John Wiley & Sons, New York.

    Google Scholar 

  • Alford, A.R., andHolmes, J.A. 1986. Sublethal effects of carbaryl, aminocarb, fenitrothion, andBacillus thuringiensis on the development and fecundity of the spruce budworm (Lepidoptera: Tortricidae).J. Econ. Entomol. 79:31–34.

    Google Scholar 

  • Anonymous. 1985. Integrated Pest Management for Tomatoes. University of California Statewide Integrated Pest Management Project. Publication 3274.

  • Barbeau, W.E., andKinsella, J.E. 1983. Factors affecting the binding of chlorogenic acid to fraction l leaf protein.J. Agric. Food Chem. 31:993–998.

    Google Scholar 

  • Barbeau, W.E., andKinsella, J.E. 1985. Effects of free and bound chlorogenic acid on the in vitro digestibility of ribulose bisphosphate carboxylase from spinach.J. Food Sci. 50:1083–1087.

    Google Scholar 

  • Barbosa, P., andSaunders, J.A. 1985. Plant allelochemicals: linkages between herbivores and their natural enemies, pp. 107–137,in G.A. Cooper-Driver and E.E. Conn (eds.). Chemically Mediated Interactions between Plants and Other Organisms. Plenum Press, New York.

    Google Scholar 

  • Barton, K.A., Whiteley, H.R., andYang, N.-S. 1987.Bacillus thuringiensis delta-endotoxin expressed in transgenicNicotiana tabacum provides resistance to lepidopteran insects.Plant Physiol. 85:1103–1109.

    Google Scholar 

  • Beckwith, R.C., andStelzer, M.J. 1987. Persistence ofBacillus thuringiensis in two formulations applied by helicopter against the western spruce budworm (Lepidoptera: Tortricidae) in north central Oregon.J. Econ. Entomol. 80:204–207.

    Google Scholar 

  • Bell, M.R., andRomine, C.L. 1986.Heliothis virescens andH. zea (Lepidoptera: Noctuidae) dosage effects of feeding mixtures ofBacillus thuringiensis and a nuclear polyhedrosis virus on mortality and growth.Environ. Entomol. 15:1161–1165.

    Google Scholar 

  • Berenbaum, M.R. 1988. Allelochemicals in insect-microbe-plant interactions: Agents provocateurs in the coevolutionary arms race, pp. 97–123,in P. Barbosa and D.K. Letourneau (eds.). Novel Aspects of Inset-Plant Interactions. Wiley-Interscience, New York.

    Google Scholar 

  • Bergman, J.M., andTingey, W.M. 1979. Aspects of interaction between plant genotypes and biological control.Bull. Entomol. Soc. Am. 25:275–279.

    Google Scholar 

  • Bloem, K.A., andDuffey, S.S. 1990a. Effect of protein type and quantity on growth and development of larvalHeliothis zea andSpodoptera exigua and the endoparasitoidHyposoter exiguae.Entomol. Exp. Appl. 54:141–148.

    Google Scholar 

  • Bloem, K.A., andDuffey, S.S. 1990b. Interactive effect of protein and rutin on larvalHeliothis zea and the endoparasitoidHyposoter exiguae.Entomol. Exp. Appl. 54:149–160.

    Google Scholar 

  • Bloem, K.A., Kelley, K.C. andDuffey, S.S. 1989. Differential effect of tomatine and its alleviation by cholesterol on larval growth and efficiency of food utilization inHeliothis zea andSpodoptera exiguae.J. Chem. Ecol. 15:387–398.

    Google Scholar 

  • Blouin, F.A., Zarins, Z.M., andCherry, J.P. 1982. Discoloration of proteins by binding with phenolic compounds, pp. 67–91,in J.P. Cherry (ed.). Food Protein Deterioration, Mechanisms and Functionality. ACS Symposium Series 206. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem 72:248–254.

    Google Scholar 

  • Broadway, R.M., andDuffey, S.S. 1986. The effect of dietary protein on the growth and digestive physiology of larvalHeliothis zea andSpodoptera exigua.J. Insect Physiol. 32:673–680.

    Google Scholar 

  • Broadway, R.M., Duffey, S.S., Pearce, G., andRyan, C.A. 1986. Plant proteinase inhibitors: A defense against herbivorous insects?Entomol. Exp. Appl. 41:33–38.

    Google Scholar 

  • Bull, D.L., House, V.S., Ables, J.R., andMorrison, R.K. 1979. Selective methods for managing insect pests of cotton.J. Econ. Entomol. 72:841–845.

    Google Scholar 

  • Bulla, L.A., Jr., Bechtel, D.B., Kramer, K.J., Shethna, Y.I., Aronson, A.I., andFitz-James, P.C. 1980. Ultrastructure, physiology, and biochemistry ofBacillus thuringiensis.CRC Crit. Rev. Microbiol. 8:147–204.

    Google Scholar 

  • Campbell, B.C., andDuffey, S.S. 1979. Tomatine and parasitic wasps: potential incompatibility of plant antibiosis with biological control.Science 205:700–702.

    Google Scholar 

  • Chestukhina, G.G., Kostina, L.I., Mikhailova, A.L., Tyurin, S.A., Klepikova, F.S., andStepanov, V.M. 1982. The main features ofBacillus thuringiensis delta-endotoxin molecular structure.Arch. Microbiol. 132:159–162.

    Google Scholar 

  • Compton, S.J., andJones, C.G. 1985. Mechanisms of dye response and interference in the Bradford protein assay.Anal. Biochem. 151:369–374.

    Google Scholar 

  • Couch, T.L., andRoss, D.A. 1980. Production and utilization ofBacillus thuringiensis.Biotech. Bioeng. 22:1297–1304.

    Google Scholar 

  • Duffey, S.S., andBloem, K.A. 1986. Plant defense-herbivore-parasite interactions and biological control, pp. 135–183,in M. Kogan (ed.). Ecological Theory and Pest Management Practice. Wiley-Interscience, New York.

    Google Scholar 

  • Duffey, S.S., andFelton, G.W. 1990. Role of plant enzymes in resistance to insects, pp. 289–313,in J.R. Whitaker and P.E. Sonnet (eds.). Enzymes in Agriculture. ACS Symposium Series 389. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Duffey, S.S., Bloem, K.A. andCampbell, B.C. 1985. Consequences of sequestration of plant natural products in plant-insect-parasitoid interactions, pp. 31–60,in D.J. Beothel and R.D. Eikenbary (eds.). Interactions of Plant Resistance and Parasitoids and Predators of Insects. Ellis Horwood Ltd., Chichester, U.K.

    Google Scholar 

  • Dulmage, H.T., andMartinez, E. 1973. The effect of continuous exposure to low concentrations of the delta-endotoxins ofBacillus thuringiensis on the development of the tobacco budwormHeliothis virescens.J. Invert. Pathol. 22:14–22.

    Google Scholar 

  • Fast, P.G., andRegniere, J. 1984. Effect of exposure time toBacillus thuringiensis on mortality and recovery of the spruce budworm (Lepidoptera: Tortricidae).Can. Entomol. 116:123–130.

    Google Scholar 

  • Faust, R.M., andBulla, L.A., Jr., 1982. Bacteria and their toxins as insecticides, pp. 75–208,in E. Kurstak (ed.). Microbial and Viral pesticides. Marcel Kekker, New York.

    Google Scholar 

  • Felton, G.W. andDahlman, D.L. 1984. Allelochemical induced stress: Effects ofl-canavanine on the pathogenicity ofBacillus thuringiensis inManduca sexta.J. Invert. Pathol. 44:187–191.

    Google Scholar 

  • Felton, G.W., andDuffey, S.S. 1990. Inactivation of a baculovirus by quinones formed in insect-damaged plant tissues.J. Chem. Ecol. 16:1221–1236.

    Google Scholar 

  • Felton, G.W., Duffey, S.S., Vail, P.V., Kaya, H.K. andManning, J. 1987. Interaction of nuclear polyhedrosis virus with catechols: Potential incompatibility for host-plant resistance against noctuid larvae.J. Chem. Ecol. 13:947–957.

    Google Scholar 

  • Felton, G.W., Broadway, R.M., andDuffey, S.S. 1989a. Inactivation of protease inhibitor activity by plant-derived quinones: Complications for host-plant resistance against noctuid herbivores.J. Insect Physiol. 35:981–990.

    Google Scholar 

  • Felton, G.W., Donato, K., Del Vecchio, R.J. andDuffey, S.S. 1989b. Activation of plant polyphenol oxidases by insect feeding reduces the nutritive quality of foliage for noctuid herbivores.J. Chem. Ecol. 15:2667–2694.

    Google Scholar 

  • Ferguson, M.P., andAlford, H.G. (eds.). 1985. Microbial/biorational pesticide registration: proceedings of a seminar. Cooperative Extension, University of California. Division of Agriculture and Natural Resources. Special Publication 3318.

  • Fields, R. 1972. The rapid determination of amino groups with TNBS.Methods Enzymol. 25B:464–468.

    Google Scholar 

  • Gasser, C.S., andFraley, R.T. 1989. Genetically engineering plants for crop improvement.Science 244:1293–1299.

    Google Scholar 

  • Hare, J.D. andAndreadis, T.G. 1983. Variation in the susceptibility ofLeptinotarsa decemlineata (Coleoptera: Chrysomelidae) when reared on different host plants to the fungal pathogen,Beauveria bassiana in the field and laboratory.Environ. Entomol. 12:1891–1896.

    Google Scholar 

  • Hartley, G.G., King, E.G., Brewer, F.D., andGantt, C.W. 1982. Rearing of theHeliothis sterile hybrid with a multicellular larval rearing container and pupal harvesting.J. Econ. Entomol. 75:7–10.

    Google Scholar 

  • Hayashiya, K. 1978. Red fluorescent protein in the digestive juice of the silkworm larvae fed on host-plant mulberry leaves.Entomol. Exp. Appl. 24:228–236.

    Google Scholar 

  • Hofmann, C., Luethy, P., Huetter, R., andPliska, V. 1988a. Binding of the delta endoxotin fromBacillus thuringiensis to brush-border membrane vesicles of the cabbage butterflyPiersis brassicae).Eur. J. Biochem. 173:85–91.

    Google Scholar 

  • Hofmann, C.Vanderbruggen, H.,Hoefte, H., vanRie, J.,Jansens, S., andvan Mellaert, H. 1988b. Specificity ofBacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts.Proc. Natl. Acad. Sci. U.S.A.

  • Huber, H.E., Luethy, P., Ebersold, H.-R., andCordier, J.-L. 1981. The subunits of the parasporal crystal ofBacillus thuringiensis: Size, linkage and toxicity.Arch. Microbiol. 129:14–18.

    Google Scholar 

  • Hurrell, R.F., Cuq, J.L., andFinot, P.A. 1982. Protein-polyphenol reactions. 1. Nutritional and metabolic consequences of the reaction between oxidized caffeic acid and the lysine residues of casein.Br. J. Nutr. 47:191–211.

    Google Scholar 

  • Ignoffo, C.M., Hostetter, D.L., andPinnell, R.E. 1974. Stability ofBacillus thuringiensis andBaculovirus heliothis on soybean foliage.Environ. Entomol. 3:117–119.

    Google Scholar 

  • Iizuka, L., Koike, S., andMitzutani, J. 1974. Antibacterial substances in feces of silkworm larvae reared on mulberry leaves.Agric. Biol. Chem. 38:1549–1550.

    Google Scholar 

  • Isman, M.B., andDuffey, S.S. 1983. Pharmacokinetics of chlorogenic acid and rutin in larvae ofHeliothis zea.J. Insect Physiol. 29:295–300.

    Google Scholar 

  • Jaques, R.P., andMorris, O.N. 1981. Compatibility of pathogens with other methods of pest control and with different crops, pp. 695–716,in H.D. Burges (ed.). Microbial Control of Pests and Plant Diseases 1970–1980. Academic Press, London.

    Google Scholar 

  • Jones, C.G. 1984. Microorganisms as mediators of plant resource exploitation by insect herbivores, pp. 53–99,in P.W. Price, C.N. Slobodchikoff, and W.S. Gaud (eds.). A New Ecology: Novel Approaches to Interactive Systems. Wiley-Interscience, New York.

    Google Scholar 

  • Kogan, M. 1986. Plant defense strategies and host-plant resistance, pp. 83–134,in M. Kogan (ed.). Ecological Theory and Integrated Pest Management. Wiley-Interscience, New York.

    Google Scholar 

  • Koike, S., Iizuka, T., andMizutani, J. 1979. Determination of caffeic acid in the digestive juice of silkworm larvae and its antibacterial activity against the pathogenicStreptococcus faecalis AD-4.Agric. Biol. Chem. 43:1727–1731.

    Google Scholar 

  • Krischik, V.A., Barbosa, P. andReichelderfer, C.F. 1988. Three trophic level interactions: allelochemicals,Manduca sexta (L.), andBacillus thuringiensis var.kurstaki Berliner.Environ. Entomol. 17:476–482.

    Google Scholar 

  • Kunimi, Y., andAruga, H. 1974. Susceptibility to infection with nuclear and cytoplasmic polyhedrosis virus of the fall webworm,Hyphantria cunea Drury reared in several artificial diets.Japan J. Appl. Entomol. Zool. 18:1–4.

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227:680–685.

    Google Scholar 

  • Leong, K.L.H., Cano, R.J., andKubinski, A.M. 1980. Factors affectingBacillus thuringiensis total field persistence.Environ. Entomol. 9:593–599.

    Google Scholar 

  • MacIntosh, S.C., Kishore, G.M., Perlak, F.J., Marrone, P.G., Stone, P.G., Stone, T.B., Sims, S.R., andFuchs, R.L. 1990. Potentiation ofBacillus thuringiensis insecticidal activity by serine protease inhibitors.J. Agric. Food Chem. 38:1145–1152.

    Google Scholar 

  • Masymiuk, B. 1970. Occurrence and nature of antibacterial substances in plants affectingBacillus thuringiensis and other entomopathogeneous bacteria.J. Invert. Pathol. 15:345–371.

    Google Scholar 

  • Matheis, G., andWhitaker, J.R. 1984. Modification of proteins by PPO and peroxidase and their products.J. Food Biochem. 8:137–162.

    Google Scholar 

  • Meeusen, R.L., andWarren, G. 1989. Insect control with genetically engineered crops.Ann. Rev. Entomol. 34:373–381.

    Google Scholar 

  • Merdan, A., Abdel-Rahman, H., andSoliman, A. 1975. On the influence of host plants on insect resistance to bacterial diseases.Z. Angew. Entomol. 78:280–285.

    Google Scholar 

  • Moar, W.J., Osbrink, W.L.A., andTrumble, J.T. 1986. Potentiation ofBacillus thuringiensis var.kurstaki with thuringiensin on beet armyworm (Lepidoptera: Noctuidae).J. Econ. Entomol. 79:1443–1446.

    Google Scholar 

  • Mohamed, A.I., Young, S.Y., andYearian, W.C. 1983. Susceptibility ofHeliothis virescens (F.) (Lepidoptera: Noctuidae) larvae to microbial agent-chemical pesticide mixtures on cotton foliage.Environ. Entomol. 12:1403–1405.

    Google Scholar 

  • Mole, S., andWaterman, P.G. 1985. Stimulatory effects of tannins and cholic acid on tryptic hydrolysis of proteins: Ecological implications.J. Chem. Ecol. 11:1323–1332.

    Google Scholar 

  • Morris, O.N. 1974. Inhibitory effects of foliage extracts of some forest trees on commercialBacillus thuringiensis.Can. Entomol. 104:1357–1361.

    Google Scholar 

  • Pfrimmer, T.R. 1979.Heliothis ssp.: Control on cotton with pyrethroids, carbamates, organophosphates, and biological insecticides.J. Econ. Entomol. 72:592–598.

    Google Scholar 

  • Pierpoint, W.S. 1983. Reaction of phenolic compounds with proteins, and their relevance to the production of leaf protein, pp. 235–267,in L. Telek and H.D. Graham (eds.). Leaf Protein Concentrates. AVI Publishing, Westport, Connecticut.

    Google Scholar 

  • Pierpoint, W.S., Ireland, R.J., andCarpenter, J.M. 1977. Modification of proteins during the oxidation of leaf phenols. Reaction of potato virus X with chlorogenoquinone.Phytochemistry 16:29–34.

    Google Scholar 

  • Price, P.W. 1986. Ecological aspects of host plant resistance and biological control: Interactions among these trophic levels, pp. 11–30,in D.J. Boethel and R.D. Eikenbary (eds.). Interactions of Plant Resistance and Parasitoids and Predators of Insects. Ellis Horwood Ltd., Chichester, U.K.

    Google Scholar 

  • Price, P.W., Bouton, C.E., Gross, P., McPheron, B.A., Thompson, J.N., andWeis, A.E. 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies.Ann. Rev. Ecol. Syst. 11:41–65.

    Google Scholar 

  • Puigserver, A.J., Sen, L.C., Gonzales-Flores, E., Feeney, R.E., andWhitaker, J.R. 1979. Covalent attachment of amino acids to casein. 1. Chemical modification and rates of in vitro enzymatic hydrolysis of derivatives.J. Agric. Food Chem. 27:1098–1104.

    Google Scholar 

  • Retnakaran, A., Lauzon, H., andFast, P. 1983.Bacillus thuringiensis induced anorexia in the spruce budworm,Christoneura fumiferana.Entomol. Exp. Appl. 34:233–239.

    Google Scholar 

  • Ryan, C.A. 1979. Proteinase inhibitors, pp. 599–618,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores, Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Salama, H.S., Foda, M.S., andSharaby, A. 1984. Novel biochemical avenues for enhancingBacillus thuringiensis endotoxin potency againstSpodoptera littoralis (Lep.: Noctuidae).Entomophaga 29:171–178.

    Google Scholar 

  • Schnepf, H.E., Wong, H.C., andWhiteley, H.R. 1985. The amino acid sequence of a crystal protein fromBacillus thuringiensis deduced from the DNA base sequence.J. Biol. Chem. 260:6264–6272.

    Google Scholar 

  • Sen, L.C., Lee, H.S., Feeney, R.E., andWhitaker, J.R. 1981. In vitro digestibility and functional properties of chemically modified casein.J. Agric. Food Chem. 29:348–354.

    Google Scholar 

  • Shape, E.S., Nickerson, K.W., Bulla, L.A., jr., andAronson, J.A. 1975. Separation of spores and parasporal crystals ofBacillus thuringiensis in gradients of certain X-ray contrasting agents.Appl. Microbiol. 30:1052–1053.

    Google Scholar 

  • Shepard, M., andDahlman, D.L. 1988. Plant-induced stresses as factors in natural enemy efficacy, pp. 363–379,in E.A. Heinrichs (ed.). Plant Stress-Insect Interactions. Wiley Interscience, New York.

    Google Scholar 

  • Smirnoff, W.A., andHutchinson, P.M. 1965. Bacteriostatic and bacteriocidal effects of extracts of foliage from various plant species onBacillus thuringiensis var.thuringiensis Berliner.J. Invert. Pathol. 7:273–280.

    Google Scholar 

  • Stubblebine, W.H., andLangenheim, J.H. 1977. Effects ofHymenaea coubaril leaf resin on the generalist herbiovoreSpodoptera exigua (beet armyworm).J. Chem. Ecol. 3:633–647.

    Google Scholar 

  • Tyrell, D.J. Bulla, L.A., jr., andDavidson, L.I. 1981. Characterization of spore coat proteins ofBacillus thuringiensis andBacillus cereus.Comp. Biochem. Physiol. 70B:535–539.

    Google Scholar 

  • Vaeck, M., Hoefte, H., Reynaerts, A., Leemans, J., van Montagu, M., andZabeau, M. 1987. Engineering of insect resistant plants using aB. thuringiensis gene, pp. 355–366,in C.J. Arntzen and C.A. Ryan (eds.). Molecular Strategies for Crop Protection. UCLA Symposia on Molecular and Cellular Biology, Vol. 48. Alan R. Liss, New York.

    Google Scholar 

  • van Sumere, C.F., Albrecht, J., Dedonder, A., de Pooter, H., andPe, I. 1975. Plant proteins and phenolics, pp. 211–264,in J.B. Harborne and C.F. van Sumere (eds.). The Chemistry and Biochemistry of Plant Proteins. Academic Press, London.

    Google Scholar 

  • Windholz, M., Budavari, S., Blumetti, R.F., and Otterbein, E.S. (eds.). 1983. The Merck Index: An Enyclopedia of Chemicals, Drugs, and Biologicals, 10th ed. Merck & Co., Rahway, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludlum, C.T., Felton, G.W. & Duffey, S.S. Plant defenses: Chlorogenic acid and polyphenol oxidase enhance toxicity ofBacillus thuringiensis subsp.kurstaki toHeliothis zea . Journal of Chemical Ecology 17, 217–237 (1991). https://doi.org/10.1007/BF00994435

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00994435

Key Words

Navigation