Skip to main content

Neuronal-Astrocytic Interactions in Brain Development, Brain Function and Brain Disease

  • Chapter
Plasticity and Regeneration of the Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 296))

Abstract

The purpose of this review is to discuss neuronal-astrocytic interactions which appear to be of major importance in development and function of the brain as well as in brain disease. Initially, the role of these interactions during development will be reviewed followed by a description of their role in normal brain function; finally, the possible importance of a breakdown of these interactions during disease processes will be discussed. However, before starting the description of these interactions, some of the current knowledge of astrocytic functions will be briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albrecht, J., Hilgier, W., Lazarewicz, J.W., Rafalowska, U., and Wysmyk-Cybula, U., 1988, Astrocytes in acute hepatic encephalopathy: Metabolic properties and transport functions, in: “The Biochemical Pathology of Astrocytes,” Norenberg M.D., Hertz, L., and Schousboe, A., eds., New York: Alan R. Liss, 465–476.

    Google Scholar 

  • Aoki, C., Joh, T.H., and Pickel, V.M., 1987, Ultrastructural localization of immunoreactivity for beta-adrenergic receptors in cortex and neostriatum of rat brain, Brain Res. 437: 264–282.

    Article  PubMed  CAS  Google Scholar 

  • Azmitia, E.C., Dolan, K. and Whitaker-Azmitia, P.M., 1990, S-100β but not NGF, EGF, insulin or calmodulin is a CNS serotonergic growth factor. Brain Res. 516: 354–6.

    Article  PubMed  CAS  Google Scholar 

  • Azmitia, E.C., and Whitaker-Azmitia, P.M., 1990, CNS 5-HT neurons and glial S-100β. Clin. Neuropharmacol. 13: 633–634.

    Google Scholar 

  • Balazs, R., Gallo, V. and Kingsbury, A., 1988, Effect of depolarization on the maturation of cerebellar granule cells in culture. Brain Res. 468: 269–276.

    PubMed  CAS  Google Scholar 

  • Balazs, R., Hack, N., and Jorgensen, O.S., 1990, Interactive effects of different classes of excitatory amino acid receptors and the survival of cerebellar granule cells in culture, Int. J. Dev. Neurosci., 8: 347–359.

    Article  PubMed  CAS  Google Scholar 

  • Barres, B.A., Chun, L.L., and Corey, D.P., 1989, Calcium current in cortical astrocytes: induction by cAMP and neurotransmitters and permissive effect of serum factors. J. Neurosci, 9: 3169–3175.

    PubMed  CAS  Google Scholar 

  • Beaudet, A., and Descarries, L., 1984, Fine structure of monoamine axon terminals in cerebral cortex, in: “Monoamine Innervation of Cerebral Cortex,” L. Descarries, T.R. Reader, and H.H. Jasper, eds., Alan R. Liss, New York, 77–93.

    Google Scholar 

  • Benjamin, A.M. and Quastel, J.H., 1975, Metabolism of amino acids and ammonia in rat brain cortex slices in vitro: A possible role of ammonia in brain function. J. Neurochem. 25: 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, C.L., and Kimeiberg, H.K., 1988, Adrenergic-receptor-mediated depolarization of astrocytes, in: “Glial Cell Receptors,” H.K. Kimeiberg, ed., Raven, New York, 53–76.

    Google Scholar 

  • Brenneman, D.E., Neale, E.A., Foster, G.A., d’Autremont, S.W., and Westbrook, G.L., 1984, Non-neuronal cells mediate neurotrophic action of vasoactive intestinal peptide, J. Cell Biol., 104: 1603–1610.

    Article  Google Scholar 

  • Bures, J., Buresova, O., and Krivanek, J., 1974, The mechanism and applications of Leao’s spreading depression of electroencephalographic activity. Academic Press, New York.

    Google Scholar 

  • Buznikov, G.A., and Shmukler, Y.B., 1981, Possible role of “prenervous” neurotransmitters in cellular interactions of early embryogenesis, Neurochem. Res., 6: 55–68.

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay, V., and Asan, E., 1989, Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson’s disease with and without dementia and depression, J. Comp. Neurol. 287, 373–392.

    Article  PubMed  CAS  Google Scholar 

  • Code, W.E., White, H.S., and Hertz, L., 1991, Midazolam effects on calcium signalling in astrocytes, submitted for publication.

    Google Scholar 

  • Coles, J.A., 1989, Functions of glial cells in the retina of the honeybee drone, Glia 2, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, AJ.L. and Plum, F., 1987, Biochemistry and Physiology of brain ammonia. Physiol. Rev. 67, 440–519.

    PubMed  CAS  Google Scholar 

  • Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S., and Smith, S.J., 1990, Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling, Science, 247: 470–474.

    Article  PubMed  CAS  Google Scholar 

  • Cowburn, R.F., Hardy, J.A., and Roberts, P.J., 1990, Glutamatergic neurotransmission in Alzheimer’s disease. Biochem. Soc. Trans., 18: 390–392.

    PubMed  CAS  Google Scholar 

  • Dani, J.W., Chernjavsky, A., and Smith, S.J., 1990, Calcium waves propagate through astrocyte networks in developing hippocampal brain slices. Abstracts, Soc. Neurosci. 16: 970.

    Google Scholar 

  • Dietzel, I., Heineman, U., and Lux, H.D., 1989, Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain, Glia, 2: 25–44.

    Article  PubMed  CAS  Google Scholar 

  • Dismukes, K., 1977, New look at the aminergic neuron systems, Nature, 269: 557–558.

    Article  Google Scholar 

  • Enkvist, M.O., Holopainen, L, and Akerman, K.E., 1989, Glutamate receptor-linked changes in membrane potential and intracellular Ca2+ in primary rat astrocytes. Glia, 2: 397–402.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, C.J., O’Neill, C., Garlind, A., and Cowburn, R.F., 1990, Alzheimer’s disease: is there a problem beyond recognition? Trends Pharmacol. Sci., 11: 183–184.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F., 1984, Glutamate: a neurotransmitter in mammalian brain, J. Neurochem., 42: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Galambos, R., 1961, A glial-neuronal theory for brain function, Proc. Nat. Acad. Sci. USA, 47: 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Grafe, P. and Ballanyi, K., 1987, Cellular mechanisms of potassium homeostasis in the mammalian nervous system. Can. J. Physiol. Pharmacol. 65: 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  • Gramsbergen, J.B., Mountjoy, C.Q., Rossor, M.N., Reynolds, G.P., and Korf, J., 1987, A correlative study on hippocampal cation shifts and amino acids and clinicopathological data in Alzheimer’s Disease, Neurobiol. Aging, 88: 487–494.

    Article  Google Scholar 

  • Griffin, W.S., Stanley, L.C., Ling, C., White, L., MacLeod, V., Perrot, L.J., White, C.L. and Araoz, C., 1989, Brain interleukin 1 and β 100 immunoreactivity are elevated in Down’s Syndrome and Alzheimer’s Disease. Proc. Nat. Sci. US Acd., 86: 7611–7615.

    Article  CAS  Google Scholar 

  • Hansson and Ronnback, 1988a, Neurons from substantia nigra increase the efficacy and potency of second messenger arising from striatal astroglia dopamine receptor, Glia, 1: 393–397.

    Article  Google Scholar 

  • Hansson, E., and Ronnback, L., 1988b, Regulation of glutamate and GABA transport by adrenoceptors in primary astroglial cell cultures, Life Sci., 44: 27–34.

    Article  Google Scholar 

  • Harik, S.I., Mitchell, M.J. and Kalaria, R.N., 1989, Ouabain binding in the human brain. Effects of Alzheimer’s disease and aging. Arch. Neurol., 46: 951–954.

    Article  PubMed  CAS  Google Scholar 

  • Harris, R.J., and Symon, L., 1984, Extracellular pH, potassium and calcium activities in progressive ischemia of rat cortex, J. Cereb. Blood Flow & Met., 4: 178–186.

    Article  CAS  Google Scholar 

  • Hartman, B.K., Swanson, L.W., Raichle, M.E., Preskorn, S.H., and Clark, H.B., 1979, Central adrenergic regulation of cerebral microvascular permeability and blood flow: anatomic and physiologic evidence, Adv. Exp. Med. Biol., 131: 113–126.

    Google Scholar 

  • Hatten, M.E., 1985, Neuronal regulation of astroglial morphology and proliferation in vitro. J. Cell. Biol. 100, 384–396.

    Article  PubMed  CAS  Google Scholar 

  • Haxby, J.V., Grandy, C.L., Koss, E., Horwitz, B., Heston, L., Schapiro, M., Friedland, R.P., and Rapoport, S.I., 1990, Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. Arch. Neurol., 47: 753–760.

    Article  PubMed  CAS  Google Scholar 

  • Hertz, L., 1965, Possible role of neuroglia: A potassium-mediated neuronal-neuroglial-neuronal impulse transmission system, Nature, 206: 1091–1094.

    Article  PubMed  CAS  Google Scholar 

  • Hertz, L., Neuronal-glial interactions, 1989a, in: “Regulatory Mechanisms of Neurons to Vessel Communication in Brain,” S. Govoni, G. Battaini and M.S. Mangoni, eds., Springer, Heidelberg, 271–305.

    Chapter  Google Scholar 

  • Hertz, L., 1989b, Is Alzheimer’s Disease an anterograde neuronal-glial degeneration, originating in the brain stem, and disrupting metabolic and functional interactions between neurons and glial cells? Brain Res.Rev., 14: 335–353.

    Article  CAS  Google Scholar 

  • Hertz, L., 1990a, Regulation of potassium homeostasis by glial cells, in: “Development and Function of Glial Cells,” G. Levi, ed., Alan R. Liss, N.Y., 225–234.

    Google Scholar 

  • Hertz, L., 1990b, Dibutyryl cyclic AMP treatment of astrocytes in primary cultures as a substitute for normal morphogenic and “functiogenic” transmitter signals, in: “Molecular Aspects of Development and Aging in the Nervous System,” A. Privat, E. Giacobini, P. Timiras and A. Vernadakis, eds., Plenum, NY, 227–243.

    Google Scholar 

  • Hertz, L., and Franck, G., 1978, Effect of increased potassium concentrations on potassium fluxes in brain slices and in glial cells, in: “Dynamic Properties of Glial Cells”, E. Schoffeniels, G. Franck, L. Hertz, and D.B. Tower, eds., Pergamon Press, Oxford, 383–388.

    Google Scholar 

  • Hertz, L., and Richardson, J.S., 1983, Acute and chronic effects of antidepressant drugs on β-adrenergic function in astrocytes in primary cultures — an indication of glial involvement in affective disorders? J. Neurosci. Res., 9: 173–183.

    Article  PubMed  CAS  Google Scholar 

  • Hertz, L., and Schousboe, A., 1986, Role of astrocytes in compartmentation of amino acid and energy metabolism, in: “Astrocytes,” S. Fedoroff, and A. Vernadakis, eds., Academic Press, New York, 2: 179–208.

    Google Scholar 

  • Hertz, L. and Schousboe, A., 1987, Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter functions. I. Differentiated cells. in: “Model Systems of Development and Aging of the Nervous System”, A. Vernadakis, A. Privat, J.M. Lauder, P.S. Timiras and E. Giacobini, eds., Martinus Nijhoff Publishers, Mass., 19–31.

    Chapter  Google Scholar 

  • Hertz, L., and Schousboe, A., 1988, Metabolism of glutamate and glutamine in neurons and astrocytes in primary cultures, in: “Glutamine and Glutamate in Mammals,” E. Kvamme, ed., CRC Press, Boca Raton, FL., 2: 39–55.

    Google Scholar 

  • Hertz, L., Murthy, Ch.R.K., Lai, J.C.K., Fitzpatrick, S.M., and Cooper, A.J.L., 1987, Some metabolic effects of ammonia on astrocytes and neurons in primary cultures, Neurochem. Pathol., 6: 97–129.

    CAS  Google Scholar 

  • Hertz, L., Bender, A.S., Woodbury, D., and White, H.S., 1989a, Potassium induced calcium uptake in astrocytes and its potent inhibition by a calcium channel blocker, J. Neurosci. Res., 22: 209–215.

    Article  CAS  Google Scholar 

  • Hertz, L., Peng, L., Hertz, E., Juurlink, B.H.J., and Yu, P.H., 1989b, Development of monoamine oxidase activity and monoamine effects on glutamate release in cerebellar neurons and astrocytes, Neurochem. Res., 1039–1096.

    Google Scholar 

  • Hertz, L., Code, W.E., Shokeir, O., Shargool, M., Woodbury, D.M., and White, M.S., 1991, Calcium signalling in astrocytes, in: “Neuroglial Function,” A.I. Roitbak, ed., Tbilisi, USSR.

    Google Scholar 

  • Hogstad, S., Svenneby, G., Torgner, I.Aa., Kvamme, E., Hertz, L., and Schousboe, A., 1988, Glutaminase in neurons and astrocytes cultured from mouse brain: Kinetic properties and effects of phosphate, glutamate and ammonia, Neurochem. Res., 13: 383–388.

    Article  PubMed  CAS  Google Scholar 

  • Hyden, H., 1959, Quantitative assay of compounds in isolated, fresh nerve cells and glial cells from control and stimulated animals, Nature, 184: 433–435.

    Article  PubMed  CAS  Google Scholar 

  • Hyden, H., and McEwen, B., 1966, A glial protein specific for the nervous system, Proc. Nat. Acad. Sci. USA, 55: 354–358.

    Article  PubMed  CAS  Google Scholar 

  • Janis, R.A., Silver, P.J., and Triggle, D.J., 1987, Drug action and cellular calcium function, Adv. Drug Res., 16:309–591.

    CAS  Google Scholar 

  • Joo, F., 1983, The blood-brain barrier in vitro: Ten years of research on microvessels isolated from the brain, Neurochem., 7: 1–25.

    Google Scholar 

  • Kalaria, R.N., Stockmeier, C.A., and Harik, S.I., 1989a, Brain microvessels are innervated by locus coeruleus noradrenergic neurons, Neurosci. Lett., 97: 203–208.

    Article  CAS  Google Scholar 

  • Kalaria, R.N., and Harik, S.I., 1989, Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer’s disease. J. Neurochem. 53: 1083–1086.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, E.G. and Driscoll, B.F., 1990, The effect of [K+] on CO2 fixation in cultured glial cells. Trans. Am. Soc. Neurochem. 21: 289.

    Google Scholar 

  • Kihara, M., and Kubo, T., 1989, Aspartate aminotransferase for synthesis of transmitter glutamate in the medulla oblongata: effect of aminooxyacetic acid and 2-oxoglutarate, J. Neurochem., 52: 1127–1134.

    Article  PubMed  CAS  Google Scholar 

  • Kuffler, S.W., 1967, Neuroglial cells: Physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential, Proc. R. Soc. Series B, 168: 1–21.

    Article  CAS  Google Scholar 

  • Lauder, J.M., 1987, Neurotransmitters as morphogenetic signals and trophic factors, in: “Model Systems of Development and Aging of the Nervous System,” Vernadakis, A., Privat, A., Lauder, J.M., Timiras, P.S. and Giacobini, E., eds, Martinus Nijhoff, Boston, 219–237.

    Chapter  Google Scholar 

  • Lauder, J.M., 1988, Neurotransmitters as morphogens. Prog. Brain Res. 73: 365–87.

    Article  PubMed  CAS  Google Scholar 

  • Lazarewicz, J.W., Kanje, M., Sellstrom, A., and Hamberger, A., 1977, Calcium fluxes in cultured and bulk isolated neuronal and glial cells. J. Neurochem. 29: 495–502.

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz, D.H., 1990, A glial cytocal wave is the conduction velocity-determining propagation mechanism of spreading depression, Abstracts, Soc. Neurosci., 16: 970.

    Google Scholar 

  • Lowe, S.L. and Bowen, D.M., 1990, Glutamic acid concentration in brains of patients with Alzheimer’s Disease, Biochem. Soc. Trans., 18, 443–444.

    PubMed  CAS  Google Scholar 

  • Mac Vicar, B.A., 1984, Voltage-dependent calcium channels in glial cells, Science, 226: 1345–1347.

    Article  CAS  Google Scholar 

  • Manier, D.H., Sulser, F., 1990, Chronic exposure of rat glioma C cells to oxaprotiline reduces the density of beta adrenoceptors, Abstracts, Soc. Neurosci., 16: 385.

    Google Scholar 

  • Mattson, M.P., 1988, Neurotransmitters in the regulation of neuronal cytoarchitecture, Brain Res., Rev., 13: 179–212.

    Article  CAS  Google Scholar 

  • Meier, E., Hertz, L., and Schousboe, A., 1991, Neurotransmitters as developmental signals, Neurochem. Int., in press.

    Google Scholar 

  • Miller, R.J., 1987, Multiple calcium channels and neuronal function, Science, 235: 46–52.

    Article  PubMed  CAS  Google Scholar 

  • Mobley, P.L., Scott, S.L., and Cruz, E.G., 1986, Protein kinase C in astrocytes: a determinant of cell morphology, Brain Res., 398: 366–369.

    Article  PubMed  CAS  Google Scholar 

  • Moller, M., Mollgard, K., Lund-Andersen, H., and Hertz, L., 1974, Concordance between morphological and biochemical estimates of fluid spaces in rat brain cortex slices, Exp. Brain Res., 21: 299–314.

    CAS  Google Scholar 

  • Narumi, S., Kimelberg, H.K., and Bourke, R.S., 1978, Effects of norepinephrine on the morphology and some enzyme activities of primary monolayer cultures from rat brain, J. Neurochem., 31, 1479–1490.

    Article  PubMed  CAS  Google Scholar 

  • Norenberg, M.D., and Martinez-Hernandez, A., 1979, Fine structural localization of glutamine synthetase in astrocytes of rat brain, Brain Res., 161: 303–310.

    Article  PubMed  CAS  Google Scholar 

  • Orkand, R.K., Nicholls, J.G., and Kuffler, S.W., 1966, Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia, J. Neurophysiol., 29: 788–806.

    PubMed  CAS  Google Scholar 

  • Palaiologos, G., Hertz, L., and Schousboe, A., 1989, Role of aspartate amino-transferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons, Neurochem. Res., 14: 359–366.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, A.M. and Gershon, S., 1990, Is the neuronal basis of Alzheimer’s disease cholinergic or glutamatergic? FASEB J., 4: 2745–2752.

    PubMed  CAS  Google Scholar 

  • Pasternack, J.M., Abraham, C.R., Van Dyke, B.J., Potter, H., and Younkin, S.G., 1989, Astrocytes in Alzheimer’s disease gray matter express alpha 1-antichymotrypsin mRNA, Am. J., Pathol., 135: 827–834.

    CAS  Google Scholar 

  • Patel, A.J., Hunt, A., Gordon, R.D., and Balazs, R., 1982, The activities in different neural cell types of certain enzymes associated with the metabolic compartmentation of glutamate. Dev. Brain. Res. 4, 3–11.

    Article  CAS  Google Scholar 

  • Peng, L., Schousboe, A., and Hertz, L., 1990, Utilization of alpha-ketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells. Neurochem. Res., in press.

    Google Scholar 

  • Peng, L., Juurlink, B.H.J., and Hertz, L., 1991, Development of cerebellar granule cells in the presence and absence of excess extracellular potassium — Do the two culture system provide a means of distinguishing between events in transmitter-related and non-transmitter-related glutamate pools?, Brain Res., submitted for publication.

    Google Scholar 

  • Petito, C.K., and Babiak, T., 1982, Early proliferative changes in astrocytes in postischemic noninfarcted rat brain. Ann. Neurol. 11:510–518.

    Article  PubMed  CAS  Google Scholar 

  • Petito, C., Juurlink, B.H.J., and Hertz, L., 1991, An in vitro model differentiating between direct and indirect effects of ischemia on astrocytes, Exp. Neurol., in press.

    Google Scholar 

  • Piccinin, G.L., Finali, G., and Picirilli, M., 1990, Neuropsychological effects of L-deprenyl in Alzheimer’s type dementia. Clin. Neuropharmacol., 13: 147–163.

    Article  PubMed  CAS  Google Scholar 

  • Procter, A.W., Palmer, A.M., Stratman, G.C., and Bowen, D.M., 1986, Glutamate aspartate-releasing neurons in Alzheimer’s Disease, N. Eng. J. Med., 314: 1711–1712.

    CAS  Google Scholar 

  • Ramon y Cajal, S., 1909, Histologie du systeme nerveux de l’homme et des vertébrés.

    Google Scholar 

  • Rapoport, S.I., Horwitz, B., Haxby, J.V., and Grady, C.L., 1986, Alzheimer’s Disease: metabolic uncoupling of associative brain regions, Can. J. Neurol. Sci., 13: 540–545.

    PubMed  CAS  Google Scholar 

  • Reichelt, W., Dettmer, D., Bruckner, G., Brust, P., Eberhardt, W., and Reichenbach, A., 1989, Potassium as a signal for both proliferation and differentiation of rabbit retina (Muller) glia growing in cell culture. Cell Signal, 1:187–94.

    Article  PubMed  CAS  Google Scholar 

  • Rossor, M.N., 1981, Parkinson’s disease and Alzheimer’s disease as disorders of the isodendritic core, Br. Med. J., 283: 1588–1590.

    Article  CAS  Google Scholar 

  • Salm, A.K. and McCarthy, K.D. Norepinephrine-evoked calcium transients in cultured cerebral type 1 astroglia. Glia 3: 529–538 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Savaki, H.E., Kadekaro, M., McCulloch, J., and Sokoloff, L., 1982, The central noradrenergic system in the rat: metabolic mapping with alpha-adrenergic blocking agents. Brain Res., 234: 65–79.

    Article  PubMed  CAS  Google Scholar 

  • Schlue, W.R. and Wuttke, W., 1983, Potassium activity in leech neuropile glial cells changes with external potassium concentration. Brain Res., 270, 368–372.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, F.O., 1984, Molecular regulators of brain function: a new view, Neurosci., 13: 991–999.

    Article  CAS  Google Scholar 

  • Schousboe, A., Hertz, L., Svenneby, G., and Kvamme, E., 1979, Phosphate activated glutaminase activity and glutamine uptake in astrocytes in primary cultures, J. Neurochem., 32: 943–950.

    Article  PubMed  CAS  Google Scholar 

  • Schousboe, A., Drejer, J., and Hertz, L., 1988, Uptake and release of glutamate and glutamine in neurons and astrocytes in primary cultures, in: “Glutamine and Glutamate in Mammals,” E. Kvamme, ed., CRC Press, Boca Raton, Fl, 2: 21–38.

    Google Scholar 

  • Shank, R.P., and Aprison, M.H., 1988, Glutamate as a neurotransmitter, in: “Glutamine and Glutamate in Mammals,” E Kvamme, ed., CRC Press, Boca Raton, Fl, 2: 3–19.

    Google Scholar 

  • Shank, R.P., and Campbell, G.leM., 1984, α-Ketoglutarate and malate uptake and metabolism by synaptosomes: Further evidence for an astrocyte to neuron metabolic shuttle, J. Neurochem., 42: 1153–1161.

    Article  PubMed  CAS  Google Scholar 

  • Shank, R.P., Bennett, G.S., Freytag, S.D., and Campbell, G.L., 1985, Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools, Brain Res., 329: 364–367.

    Article  PubMed  CAS  Google Scholar 

  • Skattebol, A., and Triggle, D.J., 1987, 45Ca2+ uptake in rat brain neurons: absence of sensitivity to the Ca2+ channel ligands nitrendipine and Bay K 8644. Can. J. Physiol. Pharmacol., 65: 344–347.

    Article  PubMed  CAS  Google Scholar 

  • Sochocka, E., Code, W.E., Shuaib, A., and Hertz, L., 1991, Effects of ischemia on cultured neurons and astrocytes, Trans. Am. Soc. Neurochem., 22, in press.

    Google Scholar 

  • Stone, E.A., and Ariano, M.A., 1989, Are glial cells targets of the central noradrenergic system? A review of the evidence, Brain Res. Rev., 14: 297–309.

    Article  PubMed  CAS  Google Scholar 

  • Subbarao, K., and Hertz, L., 1990, Effects of adrenergic agonists on glycogenosis in primary cultures of astrocytes, Brain Res., in press

    Google Scholar 

  • Subbarao, K.V., and Hertz, L., 1991, Stimulation of energy metabolism in astrocytes by adrenergic agonists, J. Neurosci.Res., in press.

    Google Scholar 

  • Sykova, E., 1983, Extracellular K+ accumulation in the central nervous system, Prog. Biophys. Molec. Biol. 42: 135–189.

    Article  CAS  Google Scholar 

  • Tariot, P.N., Sunderland, T., Weingartner, H., Murphy, D.L., Welkowitz, J.A., Thompson, K., and Cohen, R.M., 1987, Cognitive effects of L-deprenyl in Alzheimer’s disease. Psychopharmacol., 91: 489–495.

    Article  CAS  Google Scholar 

  • Tas, P.W.L., Massa, P.T., Kress, H.G. and Koschel, K., 1987, Characterization of a Na+/K+/Cl- co-transport in primary cultures of rat astrocytes. Bichim. Biophys. Acta. 903,411–416.

    Article  CAS  Google Scholar 

  • Turner, T.J., and Goldin, S.M., 1988, Do dihydropyridine-sensitive calcium channels play a role in neurosecretion in the central nervous system? Ann. NY Acad, Sci., 522: 278–283.

    Article  CAS  Google Scholar 

  • Van den Berg, C.J. and Garfinkel, D., 1971, A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem. J. 123, 211–218.

    PubMed  Google Scholar 

  • Walz, W., 1989, Role of glial cells in the regulation of the brain ion microenvironment. Progress in Neurobiology 33, 309–333.

    Article  PubMed  CAS  Google Scholar 

  • Walz, W., and Hertz, L., 1983, Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level, Progr. Neurobiol., 20: 133–183.

    Article  CAS  Google Scholar 

  • Walz, W. and Hertz, L., 1984, Intense furosemide-sensitive potassium accumulation into astrocytes in the presence of pathologically high extracellular potassium levels. J. Cerebr. Blood Flow & Metab. 4: 301–304.

    Article  CAS  Google Scholar 

  • Whitaker-Azmitia, P.M. and Azmitia, E.C., 1989, Stimulation of astroglial serotonin receptors produces culture media which regulates growth of serotonergic neurons. Brain Res. 497: 80–85.

    Article  PubMed  CAS  Google Scholar 

  • Young, M.A., Vatner, D.E., Knight, D.R., Graham, R.M., Homey, C.J., and Vatner, S.F., 1988, α-Adrenergic vasoconstriction and receptor subtypes in large coronary arteries of calves. Am. J. Physiol., 255: H1452–H1459.

    PubMed  CAS  Google Scholar 

  • Yu, A.C.H., and Hertz, L., 1983, Metabolic sources of energy in astrocytes, in: “Glutamine, Glutamate and GABA in the Central Nervous System,” L. Hertz, E. Kvamme, E.G. McGeer, and A. Schousboe, eds., Alan R. Liss, NY, 431–439.

    Google Scholar 

  • Yu, A.C.H., Schousboe, A., and Hertz, L., 1982, Metabolic fate of (14C)-labelled glutamate in astrocytes, J. Neurochem., 39: 954–966.

    Article  PubMed  CAS  Google Scholar 

  • Yu, A.C.H., Drejer, J., Hertz, L., and Schousboe, A., 1983, Pyruvate carboxylase activity in primary cultures of astrocytes and neurons, J. Neurochem., 41: 1484–1487.

    Article  PubMed  CAS  Google Scholar 

  • Yu, A.C., Gregory, G.A., and Chan, P.H., 1989, Hypoxia-induced dysfunctions and injury of astrocytes in primary cell cultures. J. Cereb. Blood Flow & Metab. 9: 20–28.

    Article  CAS  Google Scholar 

  • Yudkoff, M., Nissim, I., Hummeler, K., Medow, M., and Pleasure, D., 1986, Utilization of (15N)-glutamate by cultured astrocytes, Biochem. J., 234: 185–192.

    PubMed  CAS  Google Scholar 

  • Yudkoff, M., Nissim, I., and Hertz, L., 1990, Precursors of glutamic acid nitrogen in primary neuronal cultures: studies with 15N. Neurochem. Res., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Hertz, L. (1991). Neuronal-Astrocytic Interactions in Brain Development, Brain Function and Brain Disease. In: Timiras, P.S., Privat, A., Giacobini, E., Lauder, J., Vernadakis, A. (eds) Plasticity and Regeneration of the Nervous System. Advances in Experimental Medicine and Biology, vol 296. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8047-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8047-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8049-8

  • Online ISBN: 978-1-4684-8047-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics