Skip to main content
Log in

Role of aspartate aminotransferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Evoked release of glutamate and aspartate from cultured cerebellar granule cells was studied after preincubation of the cells in tissue culture medium with glucose (6.5 mM), glutamine (1.0 mM),d[3H] aspartate and in some cases aminooxyacetate (5.0 mM) or phenylsuccinate (5.0 mM). The release of endogenous amino acids and ofd-[3H] aspartate was measured under physiological and depolarizing (56 mM KCl) conditions both in the presence and absence of calcium (1.0 mM), glutamine (1.0 mM), aminooxyacetate (5.0 mM) and phenylsuccinate (5.0 mM). The cellular content of glutamate and aspartate was also determined. Of the endogenous amino acids only glutamate was released in a transmitter fashion and newly synthesized glutamate was released preferentially to exogenously suppliedd-[3H] aspartate, a marker for exogenous glutamate. Evoked release of endogenous glutamate was reduced or completely abolished by respectively, aminooxyacetate and phenylsuccinate. In contrast, the release ofd-[3H] aspartate was increased reflecting an unaffected release of exogenous glutamate and an increased “psuedospecific radioactivity” of the glutamate transmitter pool. Since aminooxyacetate and phenylsuccinate inhibit respectively aspartate aminotransferase and mitochondrial keto-dicarboxylic acid transport it is concluded that replenishment of the glutamate transmitter pool from glutamine, formed in the mitochondrial compartment by the action of glutaminase requires the simultaneous operation of mitochondrial keto-dicarboxylic acid transport and aspartate aminotransferase which is localized both intra- and extra-mitochondrially. The purpose of the latter enzyme apparently is to catalyze both intra- and extra-mitochondrial transamination of α-ketoglutarate which is formed intramitochondrially from the glutamate carbon skeleton and transferred across the mitochondrial membrane to the cytosol where transmitter glutamate is formed. This cytoplasmic origin of transmitter glutamate is in aggreement with the finding thatd-[3H] aspartate readily labels the transmitter pool even when synthesis of endogenous transmitter is impaired in the presence of AOAA or phenylsuccinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fonnum, F. 1984. Glutamate: A neurotransmitter in mammalian brain. J. Neurochem. 42:1–11.

    Google Scholar 

  2. Hudson, D. B., Valcana, T., Bean, G., and Timiras, P. S. 1976. Glutamic acid; a strong candidate as the neurotransmitter of cerebellar granule cells. Neurochem. Res. 1:73–81.

    Google Scholar 

  3. Stone, T. W. 1979. Glutamate as the neurotransmitter of cerebellar granule cells in the rat: An electrophysiological study. Br. J. Pharmacol. 66:291–296.

    Google Scholar 

  4. Ito, M. 1984. Glutamate as a neurotransmitter in the cerebellar cortex. Biomed. Res. 5:Suppl:63–66.

    Google Scholar 

  5. Hertz, L., Kvamme, E., McGeer, E. G., and Schousboe, A. (eds.) 1983. Glutamine, Glutamate and GABA in the Central Nervous System. Neurology and Neurobiology, Pages 1–800, Vol. 7, Alan R. Liss Inc., New York.

    Google Scholar 

  6. Schousboe, A. 1987. An overview of the biochemistry and pharmacology of glutamatergic and GABAergic neurotransmission. Biochem. Soc. Trans. 15:205–208.

    Google Scholar 

  7. Hertz, L., and Schousboe, A. 1987. Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter functions. Pages 19–31,in Vernadakis, A., Privat, A., Lauder, J. M., Timiras, P. S., and Giacobini, E. (eds.), Model Systems of Development and Aging of the Nervous System. Martinus Nijhoff Publ., Amsterdam.

    Google Scholar 

  8. Kvamme, E. 1983. Glutaminase (PAG). Pages 51–67,in Hertz, L., Kvamme, E., McGeer, E. G., and Schousboe, A. (eds.), Glutamine, Glutamate and GABA in the Central Nervous System. Neurology and Neurobiology, Vol. 7. Alan R. Liss, Inc., NY.

    Google Scholar 

  9. Ward, H. K., Thanki, C. M., and Bradford, H. F. 1983. Glutamine and glucose as precursors of transmitter amino acids: ex vivo studies. J. Neurochem. 40:855–860.

    Google Scholar 

  10. Rothstein, J. D., and Tabakoff, B. 1984. Alteration of striatal glutamate release after glutamine synthetase inhibition. J. Neurochem. 43:1438–1446.

    Google Scholar 

  11. Ward, H. K., Thanki, C. M., Peterson, D. W., and Bradford, H. F. 1982. Brain glutaminase activity in relation to transmitter glutamate biosynthesis. Biochem. Soc. Trans. 10:369–370.

    Google Scholar 

  12. Hamberger, A., Chiang, G. H., Nylen, E. S., Scheff, S. W., and Cotman, C. W. 1979. Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate. Brain Res. 168:513–530.

    Google Scholar 

  13. McCarthy, A. D., and Tipton, K. F. 1983. Glutamate dehydrogenase. Pages 19–32,in Hertz, L. Kvamme, E., McGeer, E. G., and Schousboe, A. (eds.), Glutamine, Glutamate and GABA in the Central Nervous System. Neurology and Neurobiology, Vol. 7. Alan R. Liss, Inc., NY.

    Google Scholar 

  14. Wolf, G., and Schünzel, G. 1987. Glutamate dehydrogenase in aminoacidergic structures of the postnatally developing rat cerebellum. Neurosci. Lett. 78:7–11.

    Google Scholar 

  15. Altschuler, R. A., Neises, G. R., Harmison, G. G., Wenthold, R. J., and Fex, J. 1981. Immunocytochemical localization of aspartate aminotransferase immunoreactivity in cochlear nucleus of the guinea pig. Proc. Natl. Acad. Sci. USA 78:6553–6557.

    Google Scholar 

  16. Wenthold, R. J., and Altschuler, R. A. 1983. Immunocytochemistry of aspartate aminotransferase and glutaminase. Pages 33–50in Hertz, L., Kvamme, E., McGeer, E. G. and Schousboe, A. (eds.), Glutamine, Glutamate and GABA in the Central Nervous System. Neurology and Neurobiology, Vol. 7. Alan R. Liss, Inc. NY.

    Google Scholar 

  17. Altschuler, R. A., Monaghan, D. T., Haser, W. G., Wenthold, R. J., Curthoys, N. P., and Cotman, C. W. 1985. Immunocytochemical localization of glutaminase-like and aspartate aminotransferase-like immunoreactivities in the rat and guinea pig hippocampus. Brain Res. 330:225–233.

    Google Scholar 

  18. Wenthold, R. J., Skaggs, K. K., and Altschuler, R. A. 1986. Immunocytochemical localization of aspartate aminotransferase and glutaminase immunoreactivities in the cerebellum. Brain. Res. 363:371–375.

    Google Scholar 

  19. Roberts, E. 1981. Strategies for identifying sources and sites of formation of GABA-precursor or transmitter glutamate in brain. Pages 91–102,in DiChiara, G. and Gessa, G. L. (eds.), Glutamate as a Neurotransmitter. Raven Press, New York.

    Google Scholar 

  20. Drejer, J., Larsson, O. M., and Schousboe, A. 1982. Characterization ofl-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 47:259–269.

    Google Scholar 

  21. Gallo, V., Ciotti, M. T., Coletti, A., Aloisi, F. and Levi, G. 1982. Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc. Natl. Acad. Sci. USA 79:7919–7923.

    Google Scholar 

  22. Schousboe, A., Drejer, J., and Hertz, L. 1985. Comparison of the metabolism of glucose and glutamate in cultured cerebellar granule cells. J. Neurochem. 44 Suppl.:S168.

    Google Scholar 

  23. Drejer, J., Larsson, O. M., Kvamme, E., Svenneby, G., Hertz, L. and Schousboe, A. 1985. Ontogenetic development of glutamate metabolizing enzymes in cultured cerebellar granule cells and in cerebellum in vivo. Neurochem. Res. 10:49–62.

    Google Scholar 

  24. Fonnum, F. 1968. The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guineapig brain. Biochem. J. 106:401–412.

    Google Scholar 

  25. Palaiologos, G., Hertz, L., and Schousboe, A. 1988. Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosythesis of transmitter glutamate J. Neurochem. 51:317–320.

    Google Scholar 

  26. Passarella, S., Barile, M., Atlante, A., and Quagliariello, E. 1984. Oxaloacetate uptake into rat brain mitochondria and reconstruction of the malate/oxaloacetate shuttle. Biochem. Biophys. Res. Commun. 119:1039–1046.

    Google Scholar 

  27. Passarella, S., Atlante, A., Barile, M., and Quagliariello, E. 1987. Anion transport in rat brain mitochondria: Fumarate uptake via the dicarboxylate carrier. Neurochem. Res. 12:255–264.

    Google Scholar 

  28. Meijer, A. J., and van Dam, K. 1974. The metabolic significance of anion transport in mitochondria. Biochim. Biophys. Acta 346:213–244.

    Google Scholar 

  29. Balcar, V. J., and Johnston, G. A. R. 1972. The structural specificity of high affinity uptake ofl-glutamate andl-aspartate by rat brain slices. J. Neurochem. 19:2657–2666.

    Google Scholar 

  30. Drejer, J., Larsson, O. M., and Schousboe, A. 1983. Characterization of uptake and release processes ford- andl-aspartate in primary cultures of astrocytes and cerebellar granule cells. Neurochem. Res. 8:231–243.

    Google Scholar 

  31. Wilkin, G. P., Garthwaite, J., and Balazs, R. 1982. Putative acidic amino acid transmitters in the cerebellum. II. Electron microscopic localization of transport sites. Brain Res. 244:69–80.

    Google Scholar 

  32. Levi, G., Gordon, R. D., Gallo, V., Wilkin, G. P., and Balazs, R. 1982. Putative acidic amino acid transmitters in the cerebellum. I. Depolarization-induced release. Brain Res. 239:425–445.

    Google Scholar 

  33. Meier, E., Drejer, J., and Schousboe, A. 1984. GABA induces functionally active low-affinity GABA receptors on cerebellar granule cells. J. Neurochem. 43:1737–1744.

    Google Scholar 

  34. Nielsen, E. Ø., Aarslew-Jensen, M., Diemer, N. H., Krogsgaard-Larsen, P. and Schousboe, A. 1989. Baclofen-induced, calcium-dependent stimulation of in vivo release ofd-[3H] aspartate from rat hippocampus monitored by intra-cerebral microdialysis. Neurochem. Res. 1714:421–425.

    Google Scholar 

  35. Nichols, R. A., and Nakajama, Y. 1975. Effects of manganese and cobalt on the inhibitory synapse of the crustacean stretch receptor neuron. Brain Res. 86:493–498.

    Google Scholar 

  36. Schousboe, A., Palaiologos, G., and Hertz, L. 1988. Mitochondrial keto acid transport and biosynthesis of transmitter glutamate. Trans. Amer. Soc. Neurochem. 19:199.

    Google Scholar 

  37. Palaiologos, G., Hertz, L., and Schousboe, A. 1988. Effects of aminooxyacetate or phenylsuccinate on the biosynthesis of neurotransmitter glutamate. Neurochem. Int. 13 Suppl. 1:157.

    Google Scholar 

  38. Messer, A. 1977. Maintenance and identification of mouse cerebellar granule cells in monolayer cultures. Brain Res. 130:1–12.

    Google Scholar 

  39. Meier, E., and Schousboe, A. 1982. Diffeences between GABA receptor binding to membranes from cerebellum during postnatal development and from cultured cerebellar granule cells. Dev. Neurosci. 5:546–553.

    Google Scholar 

  40. Hertz, L., Juurlink, B. H. J., Fosmark, H., and Schousboe, A. 1982. Astrocytes in primary culture. Pages 175–186in Pfeiffer, S. (ed.), Neuroscience Approached through Cell Culture, Vol. 1. CRC Press, Inc. Boca Raton, Fla.

    Google Scholar 

  41. Sensenbrenner, M., Maderspach, K., Latzkowitz, L., and Jaros, G. G. 1978. Neuronal cells from chick embryo cerebral hemispheres cultivated on poly-lysine coated surfaces. Dev. Neurosci. 1:90–101.

    Google Scholar 

  42. Hansen, G. H., Meier, E., and Schousboe, A. 1984. GABA influences the ultrastructure composition of cerebellar granule cells during development in culture. Int. J. Devl. Neurosci. 2:247–257.

    Google Scholar 

  43. Drejer, J., Honore, T., and Schousboe, A. 1987. Exciatory amino acid-induced release of3H-GABA from cultured mouse cerebral cortex interneurons. J. Neurosci. 7:2910–2916.

    Google Scholar 

  44. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  45. Lowry, O. H., and Passonneau, J. V. 1972. A Flexible System of Enzymatic Analysis. Pages 1–291, Academic Press, NY.

    Google Scholar 

  46. Lindroth, P., and Mopper, K. 1979. High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluoresence derivatization with O-phthal-dialdehyde. Anal. Chem. 51:1667–1674.

    Google Scholar 

  47. Yu, A. C. H., Schousboe, A., and Hertz, L. 1984. Influence of pathological concentrations of ammonia on metabolism of14C-labeled glutamate in astrocytes in primary cultures. J. Neurochem. 42:594–597.

    Google Scholar 

  48. Kvamme, E., Schousboe, A., Hertz, L., Torgner, I. A., and Svenneby, G. 1985. Developmental change of endogenous glutamate and gamma-glutamyl transferase in cultured cerebral cortical interneurons and cerebellar granule cells, and in mouse cerebral cortex and cerebellum in vivo. Neurochem. Res. 10:993–1008.

    Google Scholar 

  49. Hogstad, S., Svenneby, G., Torgner, I. A., Kvamme, E., Hertz, L., and Schousboe, A. 1988. Glutaminase in neurons and astrocytes cultured from mouse brain: Kinetic properties and effects of phosphate, glutamate and ammonia. Neurochem. Res. 13:383–388.

    Google Scholar 

  50. Patel, A. J., Hunt, A., Gordon, R. D., and Balazs, R. 1982. The activities in different neural cell types of certain enzymes associated with the metabolic compartmentation of glutamate. Dev. Brain Res. 4:3–11.

    Google Scholar 

  51. Nicholls, D. G., Sihra, T. S., and Sanchez-Prieto, J. 1987. Calcium-dependent and-independent release of glutamate from synaptosomes monitored by continuous fluorometry. J. Neurochem. 49:50–57.

    Google Scholar 

  52. Yu, A. C. H., Schousboe, A., and Hertz, L. 1982. Metabolic fate of14C-labelled glutamate in astrocytes in primary cultures. J. Neurochem. 39:954–960.

    Google Scholar 

  53. Kauppinen, R. A., Sihra, T. S., and Nicholls, D. G. 1987. Amioxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochim. Biophys. Acta 930:173–178.

    Google Scholar 

  54. Norenberg, M. D., and Martinez-Hernandez, A. 1979. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161:303–310.

    Google Scholar 

  55. Yu, A. C. H., Drejer, J., Hertz, L., and Schousboe, A. 1983. Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem. 41:1484–1487.

    Google Scholar 

  56. Shank, R. P., Bennett, G. S., Freitag, S. D., Campbell, G. L., and Utter, M. F. 1985. Pyruvate carboxylase: An astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res. 329:364–367.

    Google Scholar 

  57. Hertz, L., and Schousboe, A. 1988. Metabolism of glutamate and glutamine in neurons and astrocytes in primary cultures. Pages 39–55,in Kvamme, E. (ed.), Glutamine and Glutamate in Mammals, Vol. 2. CRC Press, Inc., Boca Raton, Fla.

    Google Scholar 

  58. Hertz, L., and Schousboe, A. 1986. Role of astrocytes in compartmentation of amino acid and energy metabolism. Pages 179–208in Fedoroff, S. and Vernadakis, A. (eds.), Astrocytes, Vol. 2. Academic Press, NY.

    Google Scholar 

  59. Yudkoff, M., Nissim, I., Hummeler, K., Medow, M., and Pleasure, D. 1986. Utilization of [15N]-glutamate by cultured astrocytes. Biochem. J. 234:185–192.

    Google Scholar 

  60. Hertz, L., Murthy, C. R. K., Lai, J. C. K., Fitzpatrick, S. M., and Cooper, A. J. L. 1987. Some metabolic effects of ammonia on astrocytes and neurons in primary cultures. Neurochem. Pathol. 6:97–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr Elling Kvamme

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palaiologos, G., Hertz, L. & Schousboe, A. Role of aspartate aminotransferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons. Neurochem Res 14, 359–366 (1989). https://doi.org/10.1007/BF01000039

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01000039

Key Words

Navigation