Skip to main content

Use of Chloroplast DNA Rearrangements in Reconstructing Plant Phylogeny

  • Chapter
Molecular Systematics of Plants

Abstract

Reconstructing phytogenies among genera and at higher taxonomic levels always has been fraught with difficulties. Conventional plant classifications employ a diverse array of approaches (phytochemical, anatomic, morphologic, etc.) and often offer a synthesis of these data sets. Many of these traditional characters are susceptible to convergent evolution by natural selection; the ensuing homoplasy largely precludes robust phytogenies. Only recently have we been able to examine the genetic material itself to investigate phylogenetic relationships. Chloroplast DNA (cpDNA) variation has proven to be immensely valuable in reconstructing phytogenies at the species level, and the application of cpDNA comparisons at higher taxonomic levels is now being pursued actively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnheim, N., White, T., and Rainey, W.E. (1990) Application of PCR: organismal and population biology. Bioscience 40, 174–182.

    Article  Google Scholar 

  • Baldauf, S., and Palmer, J.D. (1990) Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 344, 262–265.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, B.G., Kyhos, D.W., and Dvořák, J. (1990) Chloroplast DNA evolution and adaptive radiation in the Hawaiian silversword alliance (Asteraceae-Madiinae). Ann. Missouri Bot. Gard. 77, 96–109.

    Article  Google Scholar 

  • Blasko, K., Kaplan, S.A., Higgins, K.G., Wolfson, R., and Sears, B.B. (1988) Variation in copy number of a 24-base pair tandem repeat in the chloroplast DNA of Oenothera hookeri strain Johansen. Curr. Genet. 14, 287–292.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, C.M., Barker, R.F., and Dyer, T.A. (1988) In wheat ctDNA, segments of ribosomal protein genes are dispersed repeats, probably conserved by nonreciprocal recombination. Curr. Genet. 14, 127–136.

    Article  PubMed  CAS  Google Scholar 

  • Bruzdzinski, C.J., and Gelehrter, T.D. (1989) Determination of exon-intron structure: a novel application of the polymerase chain reaction technique. DNA 8, 691–696.

    Article  PubMed  CAS  Google Scholar 

  • Bruneau, A., Doyle, J.J., and Palmer, J.D. (1990) A chloroplast DNA inversion as a subtribal character in the Phaseoleae (Leguminosae). Syst. Bot. 15, 378–386.

    Article  Google Scholar 

  • Calie, P.J., and Hughes, K.W. (1987) The consensus land plant chloroplast gene order is present, with two alterations, in the moss Physcomitrella patens. Mol. Gen. Genet. 208, 335–341.

    Article  CAS  Google Scholar 

  • Chase, M.W., and Palmer, J.D. (1989) Chloroplast DNA systematics of lilioid monocots: resources, feasibility, and an example from the Orchidaceae. Amer. J. Bot. 76, 1720–1730.

    Article  Google Scholar 

  • Coates, D., and Cullis, C.A. (1987) Chloroplast DNA variability among Linum species. Amer. J. Bot. 74, 260–268.

    Article  CAS  Google Scholar 

  • Cronquist, A. (1981) An Integrated System of Classification of Flowering Plants, Columbia University Press, New York.

    Google Scholar 

  • Crouse, E.J., Schmitt, J.M., and Bohnert, H. (1985) Chloroplast and cyanobacterial genomes, genes and RNAs: a compilation. Plant Mol. Biol. Reporter 3, 43–89.

    Article  CAS  Google Scholar 

  • Dang, L.A., and Pring, D.R. (1986) A physical map of the sorghum chloroplast genome. Plant Mol. Biol. 6, 119–123.

    Article  CAS  Google Scholar 

  • de Heij, H.T., Lustig, H., Moeskops, D.M., Bovenberg, W.A., Bisanz, C., and Groot, G.S.P. (1983) Chloroplast DNAs of Spinacia, Petunia, and Spirodela have a similar gene organization. Curr. Genet. 7, 1–6.

    Article  Google Scholar 

  • dePamphilis, C.W., and Palmer, J.D. (1989) Evolution and function of plastid DNA: a review with special reference to nonphotosynthetic plants. In: Physiology, Biochemistry, and Genetics of Nongreen Plastids (eds. C.D. Boyer, J.C. Shannon, and R.C. Hardison), American Society of Plant Physiologists, pp. 182–202.

    Google Scholar 

  • Doebley, J.F., Ma, D.P., and Renfroe, W.T. (1987a) Insertion/deletion mutations in the Zea chloroplast genome. Curr. Genet. 11, 617–624.

    Article  PubMed  CAS  Google Scholar 

  • Doebley, J., Renfroe, W., and Blanton, A. (1987b) Restriction site variation in the Zea chloroplast genome. Genetics 117, 139–147.

    PubMed  CAS  Google Scholar 

  • Downie, S.R., Olmstead, R.G., Zurawski, G., Soltis, D.E., Soltis, P.S., Watson, J.C, and Palmer, J.D. (1991) Six independent losses of the chloroplast DNA rpl2 intron in dicotyledons: molecular and phylogenetic implications. Evolution, in press.

    Google Scholar 

  • Gounaris, I., Michalowski, C.B., Bohnert, H.J., and Price, C.A. (1986) Restriction and gene maps of plastid DNA from Capsicum annuum. Curr. Genet. 11, 7–16.

    Article  CAS  Google Scholar 

  • Green, R.M., Vardi, A., and Galun, E. (1986) The plastome of Citrus. Physical map, variation among Citrus cultivars and species and comparison with related genera. Theor. Appl. Genet. 72, 170–177.

    Article  CAS  Google Scholar 

  • Hallick, R.B. (1989) Proposals for the naming of chloroplast genes. II. Update to the nomenclature of genes for thylakoid membrane polypeptides. Plant Mol. Biol. Reporter 7, 266–275.

    Article  CAS  Google Scholar 

  • Hallick, R.B., and Bottomley, W. (1983) Proposals for the naming of chloroplast genes. Plant Mol. Biol. Reporter 1, 38–43.

    Article  CAS  Google Scholar 

  • Hansmann, P. (1987) Daffodil chromoplast DNA: comparison with chloroplast DNA, physical map, and gene localization. Z. Naturforsch. 42c, 118–122.

    Google Scholar 

  • Hasebe, M., and Iwatsuki, K. (1990) Chloroplast DNA from Adiantum capillus-veneris L., a fern species (Adiantaceae); clone bank, physical map and unusual gene localization in comparison with angiosperm chloroplast DNA. Curr. Genet. 17, 359–364.

    Article  CAS  Google Scholar 

  • Heinhorst, S., Gannon, G.C., Galun, E., Kenschaft, L., and Weissbach, A. (1988) Clone bank and physical and genetic map of potato chloroplast DNA. Theor. Appl. Genet. 75, 244–251.

    Article  CAS  Google Scholar 

  • Herrmann, R.G., Westhoff, P., Alt, J., Winter, P., Tittgen, J., Bisanz, C., Sears, B.B., Nelson, N., Hurt, E., Hauska, G., Viebrock, A., and Sebald, W. (1983) Identification and characterization of genes for polypeptides of thylakoid membrane. In: Structure and Function of Plant Genomes (eds. O. Ciferri and L. Dure), Plenum Press, New York, pp. 143–153.

    Chapter  Google Scholar 

  • Heyraud, F., Serror, P., Kuntz, M., Steinmetz, A., and Heizmann, P. (1987) Physical map and gene localization on sunflower (Helianthus annuus) chloroplast DNA: evidence for an inversion of a 23.5-kbp segment in the large single copy region. Plant Mol. Biol. 9, 485–496.

    Article  CAS  Google Scholar 

  • Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C.-R., Meng, B.-Y., Li, Y.-Q., Kanno, A., Nishizawa, Y., Hirai, A., Shinozaki, K., and Sugiura, M. (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217, 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Howe, C.J. (1985) The endpoints of an inversion in wheat chloroplast DNA are associated with short repeated sequences containing homology to att-lambda. Curr. Genet. 10, 139–145.

    Article  PubMed  CAS  Google Scholar 

  • Howe, C.J., Barker, R.F., Bowman, C.M., and Dyer, M. (1988) Common features of three inversions in wheat chloroplast DNA. Curr. Genet. 13, 343–349.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, K.R., and Gardner, R.C. (1988) Organisation of the chloroplast genome of kiwifruit (Actinidia deliciosa). Curr. Genet. 13, 339–342.

    Article  CAS  Google Scholar 

  • Jansen, R.K., and Palmer, J.D. (1987a) Chloroplast DNA from lettuce and Barnadesia (Asteraceae): structure, gene localization, and characterization of a large inversion. Curr. Genet. 11, 553–564.

    Article  CAS  Google Scholar 

  • Jansen, R.K., and Palmer, J.D. (1987b) A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc. Natl. Acad. Sci. USA 84, 5818–5822.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, R.K., and Palmer, J.D. (1988) Phylogenetic implications of chloroplast DNA restriction site variation in the Mutisieae (Asteraceae). Amer. J. Bot. 75, 753–766.

    Article  CAS  Google Scholar 

  • Jansen, R.K., Holsinger, K.E., Michaels, H.J., and Palmer, J.D. (1990) Phylogenetic analysis of chloroplast DNA restriction site data at higher taxonomic levels: an example from the Asteraceae. Evolution 44, 2089–2105.

    Article  Google Scholar 

  • Kishima, Y., Mikami, T., Hirai, A., Sugiura, M., and Kinoshita, T. (1987) Beta chloroplast genomes: analysis of fraction I protein and chloroplast DNA variation. Theor. Appl. Genet. 73, 330–336.

    Article  CAS  Google Scholar 

  • Kuhsel, M.G., Strickland, R., and Palmer, J.D. (1990) An ancient Group I intron shared by eubacteria and chloroplasts. Science 250, 1570–1573.

    Article  PubMed  CAS  Google Scholar 

  • Kung, S.D., Zhu, Y.S., and Shen, G.F. (1982) Nicotiana chloro-plast genome III. Chloroplast DNA evolution. Theor. Appl. Genet. 61, 73–79.

    Article  CAS  Google Scholar 

  • Lavin, M., Doyle, J.J., and Palmer, J.D. (1990) Evolutionary significance of the loss of chloroplast-DNA inverted repeat in the Leguminosae subfamily Papilionoideae. Evolution 44, 390–402.

    Article  CAS  Google Scholar 

  • Lidholm, J., Szmidt, A.E., Hällgren, J.E., and Gustafsson P. (1988) The chloroplast genomes of conifers lack one of the rRNA-encoding inverted repeats. Mol. Gen. Genet. 212, 6–10.

    Article  CAS  Google Scholar 

  • Ma, C., and Smith, M. A. (1985) Construction and mapping of safflower chloroplast DNA recombinants and location of selected gene markers. Theor. Appl. Genet. 70, 620–627.

    Article  Google Scholar 

  • Meyer, T.E., Cusanovich, M.A., and Kamen, M.D. (1986) Evidence against use of bacterial amino acid sequence data for construction of all-inclusive phylogenetic trees. Proc. Natl. Acad. Sci. USA 83, 217–220.

    Article  PubMed  CAS  Google Scholar 

  • Milligan, B.G., Hampton, J.N., and Palmer, J.D. (1989) Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol. Biol. Evol. 6, 355–368.

    PubMed  CAS  Google Scholar 

  • Morden, C.W., and Golden, S.S. (1989) psbA genes indicate common ancestry of prochlorophytes and chloroplasts. Nature 337, 382–385.

    Article  PubMed  CAS  Google Scholar 

  • Murai, K., and Tsunewaki, K. (1987) Chloroplast genome evolution in the genus Avena. Genetics 116, 613–621.

    PubMed  CAS  Google Scholar 

  • Murai, K., Naiyu, X., and Tsunewaki, K. (1989) Studies on the origin of crop species by restriction endonuclease analysis of organellar DNA. III. Chloroplast DNA variation and interspecific relationships in the genus Secale. Jap. J. Genet. 64, 35–47.

    Article  CAS  Google Scholar 

  • Ngernprasirtsiri, J., and Kobayashi, H. (1990) Application of an efficient strategy with a phage λ vector for constructing a physical map of the amyloplast genome of sycamore (Acer pseudoplatanus). Arch. Biochem. Biophys. 276, 172–179.

    Article  PubMed  CAS  Google Scholar 

  • Ogihara, Y., and Tsunewaki, K. (1988) Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theor. Appl. Genet. 76, 321–332.

    Article  CAS  Google Scholar 

  • Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H., and Ozeki, H. (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchanda polymorpha chloroplast DNA. Nature 322, 572–574.

    Article  CAS  Google Scholar 

  • Ohyama, K., Kohchi, T., Sano, T., and Yamada, Y. (1988) Newly identified groups of genes in chloroplasts. TIBS 13, 19–22.

    PubMed  CAS  Google Scholar 

  • Palmer, J.D. (1985a) Evolution of chloroplast and mitochondrial DNA in plants and algae. In: Molecular Evolutionary Genetics (ed. R.J. Maclntyre), Plenum Press, New York, pp. 131–240.

    Chapter  Google Scholar 

  • Palmer, J.D. (1985b) Comparative organization of chloroplast genomes. Ann. Rev. Genet. 19, 325–354.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J.D. (1991) Plastid chromosomes: structure and evolution. In: Cell Culture and Somatic Cell Genetics in Plants, Vol. 7, The Molecular Biology of Plastids (eds. L. Bogorad and I.K. Vasil), Academic Press, New York, pp. 5–53.

    Google Scholar 

  • Palmer, J.D., and Stein, D.B. (1986) Conservation of chloroplast genome structure among vascular plants. Curr. Genet. 10, 823–833.

    Article  CAS  Google Scholar 

  • Palmer, J.D., and Thompson, W.F. (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29, 537–550.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J.D., Jorgensen, R.A., and Thompson, W.F. (1985) Chloroplast DNA variation and evolution in Pisum: patterns of change and phylogenetic analysis. Genetics 109, 195–213.

    PubMed  CAS  Google Scholar 

  • Palmer, J.D., Nugent, J.M., and Herbon, L.A. (1987a) Unusual structure of geranium chloroplast DNA: a triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc. Natl. Acad. Sci. USA 84, 769–773.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J.D., Osorio, B., Aldrich, J., and Thompson, W.F. (1987b) Chloroplast DNA evolution among legumes: loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr. Genet. 11, 275–286.

    Article  CAS  Google Scholar 

  • Palmer, J.D., Jansen, R.K., Michaels, H.J., Chase, M.W., and Manhart, J.R. (1988a) Chloroplast DNA variation and plant phylogeny. Ann. Missouri Bot. Gard. 75, 1180–1206.

    Article  Google Scholar 

  • Palmer, J.D., Osorio, B., and Thompson, W.F. (1988b) Evolutionary significance of inversions in legume chloroplast DNAs. Curr. Genet. 14, 65–74.

    Article  CAS  Google Scholar 

  • Perl-Treves, R., and Galun, E. (1985) The Cucumis plastome: physical map, intrageneric variation and phylogenetic relationships. Theor. Appl. Genet. 71, 417–429.

    CAS  Google Scholar 

  • Quigley, F., and Weil, J.H. (1985) Organization and sequence of five tRNA genes and of an unidentified reading frame in the wheat chloroplast genome: evidence for gene rearrangements during the evolution of chloroplast genomes. Curr. Genet. 9, 495–503.

    Article  PubMed  CAS  Google Scholar 

  • Ritland, K., and Clegg, M.T. (1987) Evolutionary analysis of plant DNA sequences. Am. Nat. 130, S74–S100.

    Article  CAS  Google Scholar 

  • Sasaki, Y., Nagano, Y., Morioka, S., Ishikawa, H., and Matsuno, R. (1989) A chloroplast gene encoding a protein with one zinc finger. Nucleic Acids Res. 17, 6217–6227.

    Article  PubMed  CAS  Google Scholar 

  • Schilling, E.E., and Jansen, R.K. (1989) Restriction fragment analysis of chloroplast DNA and the systematics of Viguiera and related genera (Asteraceae: Heliantheae). Amer. J. Bot. 76, 1769–1778.

    Article  CAS  Google Scholar 

  • Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B.-Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H., and Sugiura, M. (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5, 2043–2049.

    PubMed  CAS  Google Scholar 

  • Smith, R.L., and Sytsma, K.J. (1990) Evolution of Populus nigra L. (sect. Aigeiros): introgressive hybridization and the chloroplast contribution of Populus alba L. (sect. Populus). Amer. J. Bot. 11, 1176–1187.

    Article  Google Scholar 

  • Soltis, D.E., Soltis, P.S., Ranker, T.A., and Ness, B.D. (1989) Chloroplast DNA variation in a wild plant, Tolmiea menziesii. Genetics 121, 819–826.

    PubMed  CAS  Google Scholar 

  • Soltis, D.E., Soltis, P.S., and Bothel, K.D. (1990) Chloroplast DNA evidence for the origins of the monotypic Bensoniella and Conimitella (Saxifragaceae). Syst. Bot. 15, 349–362.

    Article  Google Scholar 

  • Spielmann, A., Roux, E., Allmen, J. von, and Stutz, E. (1988) The soybean chloroplast genome: complete sequence of the rps19 gene, including flanking parts containing exon2 of rpl2 (upstream), but not rpl22 (downstream). Nucleic Acids Res. 16, 1199.

    Article  PubMed  CAS  Google Scholar 

  • Stein, D.B., Palmer, J.D., and Thompson, W.F. (1986) Structural evolution and flip-flop recombination of chloroplast DNA in the fern genus Osmunda. Curr. Genet. 10, 835–841.

    Article  CAS  Google Scholar 

  • Stewart, W.N. (1983) Paleobotany and the Evolution of Plants, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Strauss, S.H., Palmer, J.D., Howe, G.T., and Doerksen, A.H. (1988) Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc. Natl. Acad. Sci. USA 85, 3898–3902.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura, M. (1989) The chloroplast chromosomes in land plants. Ann. Rev. Cell Biol. 5, 51–70.

    Article  PubMed  CAS  Google Scholar 

  • Sugiura, M., Shinozaki, K., Zaita, N., Kusuda, M., and Kumano, M. (1986) Clone bank of the tobacco (Nicotiana tabacum) chloroplast genome as a set of overlapping restriction endonuclease fragments: mapping of eleven ribosomal protein genes. Plant Sci. 44, 211–216.

    Article  CAS  Google Scholar 

  • Sundberg, S.D., Denton, M.F., and Rehner, S.A. (1990) Structural map of Sedum oreganum (Crassulaceae) chloroplast DNA. Biochem. Syst. Ecol. 18, 409–411.

    Article  CAS  Google Scholar 

  • Sytsma, K.J., and Gottlieb, L.D. (1986) Chloroplast DNA evolution and phylogenetic relationships in Clarkia sect. Peripetasma (Onagraceae). Evolution 40, 1248–1261.

    Article  CAS  Google Scholar 

  • Sytsma, K.J., Smith, J.F., and Gottlieb, L.D. (1990) Phylogenetics in Clarkia (Onagraceae): restriction site mapping of chloroplast DNA. Syst. Bot. 15, 280–295.

    Article  Google Scholar 

  • Sytsma, K.J., Smith, J.F., and Berry, P.E. (1991) Biogeography and evolution of morphology, breeding systems, flavonoids, and chloroplast DNA in the four Old World species of Fuchsia (Onagraceae). Syst. Bot. 16, 257–269.

    Article  Google Scholar 

  • Terauchi, R., Terachi, T., and Tsunewaki, K. (1989) Physical map of chloroplast DNA of aerial yam, Dioscorea bulbifera L. Theor. Appl. Genet. 78, 1–10.

    Article  CAS  Google Scholar 

  • White, E.E. (1990) Chloroplast DNA in Pinus monticola. 1. Physical map. Theor. Appl. Genet. 79, 119–124.

    CAS  Google Scholar 

  • Whitfeld, P.R., and Bottomley, W. (1983) Organization and structure of chloroplast genes. Ann. Rev. Plant Physiol. 34, 279–310.

    Article  CAS  Google Scholar 

  • Wolfe, K.H., and Sharp, P.M. (1988) Identification of functional open reading frames in chloroplast genomes. Gene 66, 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Zurawski, G., and Clegg, M.T. (1987) Evolution of higher-plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. Ann. Rev. Plant Physiol. 38, 391–418.

    Article  CAS  Google Scholar 

  • Zurawski, G., Bottomley, W., and Whitfeld, P.R. (1984) Junctions of the large single copy region of the inverted repeats in Spinacia oleracea and Nicotiana debneyi chloroplast DNA: sequence of the genes for tRNAHIS and the ribosomal proteins S19 and L2. Nucleic Acids Res. 12, 6547–6558.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Pamela S. Soltis Douglas E. Soltis Jeff J. Doyle

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Downie, S.R., Palmer, J.D. (1992). Use of Chloroplast DNA Rearrangements in Reconstructing Plant Phylogeny. In: Soltis, P.S., Soltis, D.E., Doyle, J.J. (eds) Molecular Systematics of Plants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3276-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3276-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-02241-8

  • Online ISBN: 978-1-4615-3276-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics