Skip to main content
Log in

In wheat ctDNA, segments of ribosomal protein genes are dispersed repeats, probably conserved by nonreciprocal recombination

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Some dispersed repeated sequences and their flanking regions from wheat and maize ctDNAs have been characterized. Two sets of wheat ctDNA repeats were found to be the chloroplast ribosomal protein genesrpl2 andrpl23, plus nonfunctional segments of them, designatedrpl2′ andrpl23′. Pairwise comparisons were made between the wheatrp123 andrpl23′, and the maizerp123′ sequences. The precise patterns of homology suggest that the divergence of the wheat and maize nonfunctional (rpl23′) sequences is being retarded by nonreciprocal recombination, biased by selection for individuals with functional (rpl23) sequences. The implied involvement of these sequences in mechanisms of homologous recombination, and therefore in the creation and spread of new ctDNA variants, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertini A, Hofer M, Calos MP, Miller JH (1982) Cell 24:319–328

    Google Scholar 

  • Baltimore D (1981) Cell 24:592–594

    Google Scholar 

  • Barros MDC, Barker RF, Dyer TA (1988) Plant Mol Biol (in press)

  • Birkey CW Jr (1983) Science 222:468–475

    Google Scholar 

  • Boffey SA, Leech RM (1982) Plant Physiol 69:1387–1391

    Google Scholar 

  • Bonnard G, Weil J-H, Steinmetz A (1985) Curr Genet 9:417–422

    Google Scholar 

  • Bowman CM, Dyer TA (1986) Curr Genet 10:931–941

    Google Scholar 

  • Chen EJ, Seeburg PH (1985) DNA 4:165–170

    Google Scholar 

  • Dang LH, Pring DR (1986) Plant Mol Biol 6:119–123

    Google Scholar 

  • Dover G (1982) Nature 299:111–117

    Google Scholar 

  • Dover GA, Tautz D (1986) Philos Trans R Soc Lond [Biol] 312:275–289

    Google Scholar 

  • Gatenby AA, Castleton JA, Saul MW (1981) Nature 2 91:117–121

    Google Scholar 

  • Gillham NW, Boynton JE, Harris EH (1985) In: Cavalier-Smith T (ed) The evolution of genome size. Wiley, New York, pp 299–251

    Google Scholar 

  • Hallick RB, Bottomley W (1983) Plant Mol Biol Rep 1(4):38–43

    Google Scholar 

  • Howe CJ (1985) Curr Genet 10:139–145

    Google Scholar 

  • Howe CJ, Barker RF, Bowman CM, Dyer TA (1988) Curr Genet 13:343–349

    Google Scholar 

  • Kimura M (1986) Philos Trans R Soc Lond Ser B 312:343–354

    Google Scholar 

  • Kolodner R, Tewari KK (1979) Proc Natl Acad Sci USA 76:41–45

    Google Scholar 

  • Kowalczykowski SC (1987) Trend Biochem Sci 12:141–145

    Google Scholar 

  • Lemieux C, Lee RW (1987) Proc Natl Acad Sci USA 84:4166–4170

    Google Scholar 

  • Liskay RM, Letsou A, Stachelek JL (1987) Genetics 115:161–167

    Google Scholar 

  • Maeda N, Smithies O (1986) Annu Rev Genet 20:81–108

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Methods Enzymol 65:499–560

    Google Scholar 

  • McIntosh L, Poulsen C, Bogorad L (1980) Nature 288:556–560

    Google Scholar 

  • Medgyesy P, Fejes E, Maliga P (1985) Proc Natl Acad Sci USA 82:6960–6964

    Google Scholar 

  • Michalowski C, Breunig KD, Bohnert HJ (1987) Curr Genet 11:265–274

    Google Scholar 

  • Moon E, Kao T-H, Wu R (1987) Nucleic Acids Res 15:611–630

    Google Scholar 

  • Murphy G, Kavanagh A (1988) Nucleic Acids Res (in press)

  • Oliver RP, Poulsen C (1984) Carlsberg Res Commun 49:647–673

    Google Scholar 

  • Palmer JD (1983) Nature 301:92–93

    Google Scholar 

  • Palmer JD (1985) Annu Rev Genet 19:325–354

    Google Scholar 

  • Palmer JD, Osorio B, Aldrich J, Thompson WF (1987) Curr Genet 11:275–286

    Google Scholar 

  • Quigley F, Weil JH (1985) Curr Genet 9:495–503

    Google Scholar 

  • Sanger F, Nicklen S, Coulsen AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sellden G, Leech RM (1981) Plant Physiol 68:731–734

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashim T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) EMBO J 5:2043–2049

    Google Scholar 

  • Smithies O, Powers PA (1986) Philos Trans R Soc Lond [Biol] 312:291–302

    Google Scholar 

  • Spreitzer RJ, Chastain CJ (1987) Curr Genet 11:611–616

    Google Scholar 

  • Stern DB, Gruissem W (1987) Cell 51:1145–1157

    Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein R, Stahl FW (1983) Cell 33:25–35

    Google Scholar 

  • Tanaka M, Wakasugi T, Sugita M, Shinozaki K (1986) Proc Natl Acad Sci USA 83:6030–6034

    Google Scholar 

  • Voelkel-Meiman K, Keil RL, Roeder GS (1987) Cell 48:1071–1079

    Google Scholar 

  • Weiner AM, Deininger PL, Efstradiatis A (1986) Annu Rev Biochem 55:631–661

    Google Scholar 

  • Wolfe KH, Li W-H, Sharp PM (1987) Proc Natl Acad Sci USA 84:9054–9058

    Google Scholar 

  • Zurawski G, Clegg MT (1987) Annu Rev Plant Physiol 38:391–418

    Google Scholar 

  • Zurawski G, Clegg MT, Brown AHD (1984) Genetics 106:735–749

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowman, C.M., Barker, R.F. & Dyer, T.A. In wheat ctDNA, segments of ribosomal protein genes are dispersed repeats, probably conserved by nonreciprocal recombination. Curr Genet 14, 127–136 (1988). https://doi.org/10.1007/BF00569336

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00569336

Key words

Navigation