Skip to main content
Log in

Conservation of chloroplast genome structure among vascular plants

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

We have constructed the first physical map of a gymnosperm chloroplast genome and compared its organization with those of a fern and several angiosperms by heterologous filter hybridization. The chloroplast genome of the gymnosperm Ginkgo biloba consists of a 158 kb circular chromosome that contains a ribosomal RNA-encoding inverted repeat approximately 17 kb in size. Gene mapping experiments demonstrate a remarkable similarity in the linear order and absolute positions of the ribosomal RNA genes and of 17 protein genes in the cpDNAs of Ginkgo biloba, the fern Osmunda cinnamomea and the angiosperm Spinacia oleracea. Moreover, filter hybridizations using as probes cloned fragments that cover the entirety of the angiosperm chloroplast genome reveal a virtually colinear arrangement of homologous sequence elements in these genomes representing three divisions of vascular plants that diverged some 200–400 million years ago. The only major difference in chloroplast genome structure among these vascular plants involves the size of the rRNA-encoding inverted repeat, which is only 10 kb in Osmunda, 17 kb in Ginkgo, and about 25 kb in most angiosperms. This size variation appears to be the result of spreading of the repeat through previously single copy sequences, or the reverse process of shrinkage, unaccompanied by any overall change in genome complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt J, Morris J, Westhoff P, Herrmann RG (1984) Curr Genet 8:597–606

    Google Scholar 

  • Banks HP (1970) Evolution and plants of the past. Wadsworth, Belmont, CA, pp 1–170

    Google Scholar 

  • Birnboim HC, Doly JC (1979) Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bohnert HJ, Crouse EJ, Schmitt JM (1982) Encycl Plant Physiol 1413:475–530

    Google Scholar 

  • Bottomley W, Bohnert HJ (1982) Encycl Plant Physiol 1413:531 to 596

    Google Scholar 

  • Bovenberg WA, Kool AJ, Nijkamp HJJ (1981) Nucleic Acids Res 9:503–517

    Google Scholar 

  • Bovenberg WA, Howe CH, Kool AJ, Nijkamp HJJ (1984a) Curr Genet 8:283–290

    Google Scholar 

  • Bovenberg WA, Koes RE, Kool AJ, Nijkamp HJJ (1984b) Curr Genet 8:231–241

    Google Scholar 

  • Chu NM, Tewari KK (1982) Mol Gen Genet 186:23–32

    Google Scholar 

  • Crouse EJ, Schmitt JM, Bohnert HJ (1985) Plant Mol Biol Rep 3:43–89

    Google Scholar 

  • Curtis SE, Clegg MT (1984) Mol Biol Evol 1:291–301

    Google Scholar 

  • De Heij HT, Lustig H, Moeskops DJM, Bovenberg WA, Bisanz C, Groot GSP (1983) Curr Genet 7:1–6

    Google Scholar 

  • Fluhr R, Edelman M (1981) Nucleic Acids Res 9:6841–6853

    Google Scholar 

  • Gillham NW, Boynton JE, Harris EH (1985) In: Cavalier-Smith T (ed) DNA and evolution: natural selection and genome size. Wiley, New York, pp 299–351

    Google Scholar 

  • Gruenbaum Y, Nevah-Many T, Cedar H, Razin A (1981) Nature (London) 292:860–862

    Google Scholar 

  • Hedberg MF, Huang YS, Hommersand MH (1981) Science 213:445–447

    Google Scholar 

  • Heinemeyer W, Alt J, Herrmann RG (1984) Curr Genet 8:543–549

    Google Scholar 

  • Herrmann RG, Westhoff P, Alt J, Winter P, Tittgen J, Bisanz C, Sears BB, Nelson N, Hurt E, Hauska G, Viebrock A, Sebald W (1983) In: Ciferri O, Dure L III (eds) Structure and function of plant genomes. Plenum Press, New York, pp 143–153

    Google Scholar 

  • Herrmann RG, Alt J, Schiller B, Widger WR, Cramer WA (1984) FEBS Lett 176:239–244

    Google Scholar 

  • Howe CJ, Bowman CJ, Dyer TA, Gray JC (1983) Mol Gen Genet 190:51–55

    Google Scholar 

  • Koller B, Delius H (1980) Mol Gen Genet 178:261–269

    Google Scholar 

  • Kolodner R, Tewari KK (1979) Proc Natl Acad Sci USA 76:41–45

    Google Scholar 

  • Lemieux B, Lemieux C (1985) Curt Genet 10:213–219

    Google Scholar 

  • Lemieux C, Turmel M, Lee RW, Bellemare G (1985a) Plant Mol Biol 5:77–84

    Google Scholar 

  • Lemieux C, Turmel M, Seligy VL, Lee RW (1985b) Curr Genet 9:139–145

    Google Scholar 

  • Morris J, Herrmann RG (1984) Nucleic Acids Res 12:2837–2850

    Google Scholar 

  • Mubumbila M, Crouse EJ, Weil JH (1984) Curr Genet 8:379–385

    Google Scholar 

  • Ohyama K, Yamano Y, Fukuzawa H, Komano T, Yamagishi H, Fujimoto S, Sugiura M (1983) Mol Gen Genet 189:1–9

    Google Scholar 

  • Oishi KK, Shapiro DR, Tewari KK (1984) Mol Cell Biol 4:2556 to 2563

    Google Scholar 

  • Padmanabhan H, Green BR (1978) Biochim Biophys Acta 521:67–73

    Google Scholar 

  • Palmer JD (1982) Nucleic Acids Res 10:1593–1605

    Google Scholar 

  • Palmer JD (1983) Nature (London) 301:92–93

    Google Scholar 

  • Palmer JD (1985a) Annu Rev Genet 19:325–354

    Google Scholar 

  • Palmer JD (1985b) In: MacIntyre RJ (ed) Monographs in evolutionary biology: molecular evolutionary genetics. Plenum Press, New York, pp 131–240

    Google Scholar 

  • Palmer JD (1985c) Methods Enzymol 118:167–186

    Google Scholar 

  • Palmer JD, Stein DB (1982) Curr Genet 5:165–170

    Google Scholar 

  • Palmer JD, Thompson WF (1981a) Proc Natl Acad Sci USA 78:5533–5537

    Google Scholar 

  • Palmer JD, Thompson WF (1981b) Gene 15:21–26

    Google Scholar 

  • Palmer JD, Thompson WF (1982) Cell 29:537–550

    Google Scholar 

  • Palmer JD, Shields CR, Cohen DB, Orton TJ (1983a) Theor Appl Genet 65:181–189

    Google Scholar 

  • Palmer JD, Singh GP, Pillary DTN (1983b) Mol Gen Genet 190:13–19

    Google Scholar 

  • Palmer JD, Osorio B, Watson JC, Edwards H, Dodd J, Thompson WF (1984) In: Thornber JP, Staehelin LA, Hallick RB (eds) Biosynthesis of the photosynthetic apparatus: molecular biology, development and regulation. Liss, New York, pp 273–283 (UCLA Symposia on Molecular and Cellular Biology, new series, vol 14)

    Google Scholar 

  • Palmer JD, Jorgensen RA, Thompson WF (1985a) Genetics 109:195–213

    Google Scholar 

  • Palmer JD, Boynton JE, Gillham NW, Harris EH (1985b) In: Steinback KE, Bonitz S, Arntzen CJ, Bogorad L (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 269–278

    Google Scholar 

  • Rasmussen OF, Bookjans G, Stummann BM, Henningsen KW (1984) Plant Mol Biol 3:191–199

    Google Scholar 

  • Stein DB, Palmer JD, Thompson WF (1986) Curr Genet 10:835–841

    Google Scholar 

  • Tymns MJ, Schweiger HG (1985) Proc Natl Acad Sci USA 82:1706–1710

    Google Scholar 

  • Westhoff P, Alt J, Nelson N, Herrmann RG (1985) Mol Gen Genet 199:290–299

    Google Scholar 

  • Whitfeld PR, Bottomley W (1983) Annu Rev Plant Physiol 34:279–310

    Google Scholar 

  • Willey DL, Auffret AD, Gray JC (1984) Cell 36:555–562

    Google Scholar 

  • Zurawski G, Bottomley W, Whitfeld PR (1982) Proc Natl Acad Sci USA 79:6260–6264

    Google Scholar 

  • Zurawski G, Bottomley W, Whitfeld PR (1984) Nucleic Acids Res 12:6547–6558

    Google Scholar 

  • Zurawski G, Whitfeld PR, Bottomley W (1986) Nucleic Acids Res 14:3975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, J.D., Stein, D.B. Conservation of chloroplast genome structure among vascular plants. Curr Genet 10, 823–833 (1986). https://doi.org/10.1007/BF00418529

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00418529

Key words

Navigation