Skip to main content

Mechanisms of Luteal Cell Regulation by Prolactin

  • Chapter
Prolactin

Part of the book series: Endocrine Updates ((ENDO,volume 12))

Abstract

The corpus luteum is an endocrine gland of limited lifespan formed from the remaining granulosa and theca cells of the follicle following ovulation. The main function of this gland is the synthesis and secretion of progesterone. Progesterone is a steroid hormone required for preparing the endometrium for implantation, regulating pituitary gonadotropin secretion and, importantly, maintaining a quiescent uterus by inhibiting the contractile activity of the myometrium, thus preventing the onset of parturition. In some species, such as the rat and mouse, the corpus luteum is responsible for the secretion of progesterone throughout pregnancy and is necessary for the entire length of gestation. In other species, such as human, the placenta assumes the majority of progesterone secretion at some point in gestation. In all mammals, however, progesterone is required for pregnancy and during a portion of gestation it must come from the corpus luteum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dresel I. The effect of prolactin on the estrous cycle of non-parous mice. Science. 1935;82:173.

    Article  PubMed  CAS  Google Scholar 

  2. Astwood EB. The regulation of corpus luteum function by hypophysial luteotrophin. Endocrinology. 1941;28:309–320.

    Article  CAS  Google Scholar 

  3. Evans HM, Simpson ME, Lyons WR, Turpeinen K. Anterior pituitary hormones which favor the production of traumatic uterine placentomata. Endocrinology. 1941;28:933–945.

    Article  CAS  Google Scholar 

  4. Tobin CE. Effects of lactogen on normal and adrenalectomized female rats. Endocrinology. 1942;31:197–200.

    Article  CAS  Google Scholar 

  5. Malven PV, Sawyer CH. A luteolytic action of prolactin in hypophysectomized rats. Endocrinology. 1966;79:268–274.

    Article  PubMed  CAS  Google Scholar 

  6. Hinds LA. Control of pregnancy, parturition and luteolysis in marsupials. Reprod Fertil Dev. 1990;2:535–552.

    Article  PubMed  CAS  Google Scholar 

  7. Tyndale-Biscoe CH, Hinds L. Hormonal control of the corpus luteum and embryonic diapause in macropodid marsupials. J Reprod Fertil Suppl. 1981;29:111–117.

    PubMed  CAS  Google Scholar 

  8. Papke RL, Concannon PW, Travis HF, Hansel W. Control of luteal function and implantation in the mink by prolactin. J Anim Sci. 1980;50:1102–1107.

    PubMed  CAS  Google Scholar 

  9. Freeman ME. The neuroendocrine control of the ovarian cycle in the rat. In: Knobil E, Neill JD, eds. The Physiology of Reproduction. Second ed. New York: Raven Press; 1994:613–658.

    Google Scholar 

  10. Morishige W, Pepe GJ, Rothchild I. Serum luteinizing hormone, prolactin and progesterone levels during pregnancy in the rat. Endocrinology. 1973;92:1527–1530.

    Article  PubMed  CAS  Google Scholar 

  11. Freeman ME, Neill JD. The pattern of prolactin secretion during pseudopregnancy in the rat: a daily nocturnal surge. Endocrinology. 1972;90:1292–1294.

    Article  PubMed  CAS  Google Scholar 

  12. Prigent-Tessier A, Tessier C, Hirosawa-Takamori M, Boyer C, Ferguson-Gottschall S, Gibori G. Rat decidual prolactin. Identification, molecular cloning, and characterization. J Biol Chem. 1999;274:37982–37989.

    Article  PubMed  CAS  Google Scholar 

  13. Gibori G, Rothchild I, Pepe GJ, Morishige WK, Lam P. Luteotrophic action of decidual tissue in the rat. Endocrinology. 1974;95:1113–1118.

    Article  PubMed  CAS  Google Scholar 

  14. Gibori G. The corpus luteum of pregnancy. In: Adashi EY, Leung PCK, eds. The Ovary. New York: Raven Press; 1993:261–317.

    Google Scholar 

  15. Ogren L, Talamantes F. The placenta as an endocrine organ: polypeptides. In: Knobil E, Neill JD, eds. The Physiology of Reproduction. Second ed. New York: Raven Press; 1994:875–946.

    Google Scholar 

  16. Soares M, Faria TN, Roby KF, Deb S. Pregnancy and the prolactin family of hormones: coordination of anterior pituitary, uterine, and placental expression. Endocr Rev. 1991;12:402–423.

    Article  PubMed  CAS  Google Scholar 

  17. Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, Smith F, Markoff E, Dorshkind K. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J. 1997;16:6926–6935.

    Article  PubMed  CAS  Google Scholar 

  18. Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, Edery M, Brousse N, Babinet C, Binart N, Kelly PA. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 1997;11:167–178.

    Article  PubMed  CAS  Google Scholar 

  19. Binart N, Helloco C, Ormandy CJ, Barra J, Clement-Lacroix P, Baran N, Kelly PA. Rescue of preimplantatory egg development and embryo implantation in prolactin receptor-deficient mice after progesterone administration. Endocrinology. 2000;141:2691–2697.

    Article  PubMed  CAS  Google Scholar 

  20. Reese J, Binart N, Brown N, Ma WG, Paria BC, Das SK, Kelly PA, Dey SK. Implantation and decidualization defects in prolactin receptor (PRLR)-deficient mice are mediated by ovarian but not uterine PRLR. Endocrinology. 2000;141:1872–1881.

    Article  PubMed  CAS  Google Scholar 

  21. Jayatilak Pg GG. Ontogeny of prolactin receptors in rat decidual tissue: binding by a locally produced prolactin-like hormone. J Endocrinol. 1986;110:115–121.

    Article  PubMed  CAS  Google Scholar 

  22. Gu Y, Srivastava RK, L. CD, Linzer DI, G. G. The decidual prolactin receptor and its regulation by decidua-derived factors. Endocrinology. 1996;137:4878–4885.

    Article  PubMed  CAS  Google Scholar 

  23. Basuray R, Jaffe RC, Gibori G. Role of decidual luteotropin and prolactin in the control of luteal cell receptors of estradiol. Biol Reprod. 1983;28:551–556.

    Article  PubMed  CAS  Google Scholar 

  24. Tessier C, Deb S, Prigent-Tessier A, Ferguson-Gottschall S, Gibori GB, Shiu RPC, Gibori G. Estrogen receptors alpha and beta in the rat decidua: cell specific expression and differential regulation by steroid hormones and prolactin. Endocrinology (in press). 2000.

    Google Scholar 

  25. Deb S, Tessier C, Prigent-Tessier A, Barkai U, Ferguson-Gottschall S, Srivastava RK, Faliszek J, Gibori G. The expression of interleukin-6 (IL-6), IL-6 receptor, and gp130kilodalton glycoprotein in the rat decidua and a decidual cell line: regulation by 17betaestradiol and prolactin. Endocrinology. 1999;140:4442–4450.

    Article  PubMed  CAS  Google Scholar 

  26. Tessier C, Prigent-Tessier A, Ferguson-Gottschall S, Djiane J, Gibori G. Decidual expression of 20alpha-hydroxysteroid dehydrogenase and mechanism of its regulation by rat decidual PRL (rdPRL). In: Meeting of the Society for the Study of Reproduction. Madison, WI: Society for the Study of Reproduction; 2000:196.

    Google Scholar 

  27. Dunaif AE, Zimmerman EA, Friesen HG, Frantz AG. Intracellular localization of prolactin receptor and prolactin in the rat ovary by immunocytochemistry. Endocrinology. 1982;110:1465–1471.

    Article  PubMed  CAS  Google Scholar 

  28. Shirota M, Banville D, Ali S, Jolicoeur C, Boutin JM, Edery M, Djiane J, Kelly PA. Expression of two forms of prolactin receptor in rat ovary and liver. Mol Endocrinol. 1990;4:1136–1143.

    Article  PubMed  CAS  Google Scholar 

  29. Hu ZZ, Dufau ML. Multiple and differential regulation of ovarian prolactin receptor messenger RNAs and their expression. Biochem Biophys Res Commun. 1991;181:219–225.

    Article  CAS  Google Scholar 

  30. Nelson SE, McLean MP, Jayatilak PG, Gibori G. Isolation, characterization, and culture of cell subpopulations forming the pregnant rat corpus luteum. Endocrinology. 1992;130:954–966.

    Article  PubMed  CAS  Google Scholar 

  31. Clarke DL, Linzer DI. Changes in prolactin receptor expression during pregnancy in the mouse ovary. Endocrinology. 1993; 133:224–232.

    Article  PubMed  CAS  Google Scholar 

  32. Boutin JM, Jolicoeur C, Okamura H, Gagnon J, Edery M, Shirota M, Banville D, Dusanter-Fourt I, Djiane J, Kelly PA. Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family. Cell. 1988;53:69–77.

    Article  PubMed  CAS  Google Scholar 

  33. Telleria CM, Parmer TG, Zhong L, Clarke DL, Albarracin CT, Duan WR, Linzer DI, Gibori G. The different forms of the prolactin receptor in the rat corpus luteum: developmental expression and hormonal regulation in pregnancy. Endocrinology. 1997;138:4812–4820.

    Article  PubMed  CAS  Google Scholar 

  34. Russell DL, Richards JS. Differentiation-dependent prolactin responsiveness and stat (signal transducers and activators of transcription) signaling in rat ovarian cells. Mol Endocrinol. 1999;13:2049–2064.

    Article  PubMed  CAS  Google Scholar 

  35. Lebrun JJ, Ali S, Goffin V, Ullrich A, Kelly PA. A single phosphotyrosine residue of the prolactin receptor is responsible for activation of gene transcription. Proc Natl Acad Sci U S A. 1995;92:4031–4035.

    Article  PubMed  CAS  Google Scholar 

  36. Chang WP, Clevenger CV. Modulation of growth factor receptor function by isoform heterodimerization. Proc Natl Acad Sci U S A. 1996;93:5947–5952.

    Article  PubMed  CAS  Google Scholar 

  37. Gouilleux F, Wakao H, Mundt M, Groner B. Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J. 1994;13:4361–4369.

    PubMed  CAS  Google Scholar 

  38. Berlanga J, Garcia-Ruiz JP, Perrot-Applanat M, Kelly PA, Edery M. The short form of the prolactin (PRL) receptor silences PRL induction of the beta-casein gene promoter. Mol Endocrinol. 1997;11:1449–1457.

    Article  PubMed  CAS  Google Scholar 

  39. Perrot-Applanat M, Gualillo O, Pezet A, Vincent V, Edery M, Kelly PA. Dominant negative and cooperative effects of mutant forms of prolactin receptor. Mol Endocrinol. 1997;11:1020–1032.

    Article  PubMed  CAS  Google Scholar 

  40. Silvennoinen O, Saharinen P, Paukku K, Takaluoma K, Kovanen P. Cytokine receptor signal transduction through Jak tyrosine kinases and Stat transcription factors. Apmis. 1997;105:497–509.

    Article  PubMed  CAS  Google Scholar 

  41. Buckley AR, Rao YP, Buckley DJ, Gout PW. Prolactin-induced phosphorylation and nuclear translocation of MAP kinase in Nb2 lymphoma cells. Biochem Biophys Res Commun. 1994;204:1158–1164.

    Article  PubMed  CAS  Google Scholar 

  42. Das R, Vonderhaar BK. Transduction of prolactin’s (PRL) growth signal through both long and short forms of the PRL receptor. Mol Endocrinol. 1995;9:1750–1759.

    Article  PubMed  CAS  Google Scholar 

  43. Piccoletti R, Maroni P, Bendinelli P, Bernelli-Zazzera A. Rapid stimulation of mitogenactivated protein kinase of rat liver by prolactin. Biochem J. 1994;303:429–433.

    PubMed  CAS  Google Scholar 

  44. Ratovondrahona D, Fournier B, Odessa MF, Dufy B. Prolactin stimulation of phosphoinositide metabolism in CHO cells stably expressing the PRL receptor. Biochem Biophys Res Commun. 1998;243:127–130.

    Article  PubMed  CAS  Google Scholar 

  45. Hunter S, Koch BL, Anderson SM. Phosphorylation of cbl after stimulation of Nb2 cells with prolactin and its association with phosphatidylinositol 3-kinase. Mol Endocrinol. 1997;11:1213–1222.

    Article  PubMed  CAS  Google Scholar 

  46. al-Sakkaf K, Dobson PR, Brown BL. Activation of phosphatidylinositol 3-kinase by prolactin in Nb2 cells. Biochem Biophys Res Commun. 1996;221:779–784.

    Article  PubMed  CAS  Google Scholar 

  47. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998;19:225–268.

    Article  PubMed  CAS  Google Scholar 

  48. Russell DL, Norman RL, Dajee M, Liu X, Henninghausen L, Richards JS. Prolactininduced activation and binding of stat proteins to the IL-6RE of the alpha 2-macroglobulin (alpha 2M) promoter: relation to the expression of alpha 2M in the rat ovary. Biol Reprod. 1996;55:1029–1038.

    Article  PubMed  CAS  Google Scholar 

  49. Ruff SJ, Leers-Sucheta S, Melner MH, Cohen S. Induction and activation of Stat 5 in the ovaries of pseudopregnant rats. Endocrinology. 1996;137:4095–4099.

    Article  PubMed  CAS  Google Scholar 

  50. Zhong L, Parmer TG, Robertson MC, Gibori G. Prolactin-mediated inhibition of 20alpha-hydroxysteroid dehydrogenase gene expression and the tyrosine kinase system. Biochem Biophys Res Commun. 1997;235:587–592.

    Article  PubMed  CAS  Google Scholar 

  51. Dajee M, Fey GH, Richards JS. Stat 5b and the orphan nuclear receptors regulate expression of the alpha2-macroglobulin (alpha2M) gene in rat ovarian granulosa cells. Mol Endocrinol. 1998;12:1393–1409.

    Article  PubMed  CAS  Google Scholar 

  52. Dajee M, Kazansky AV, Raught B, Hocke GM, Fey GH, Richards JS. Prolactin induction of the alpha 2-Macroglobulin gene in rat ovarian granulosa cells: stat 5 activation and binding to the interleukin-6 response element. Mol Endocrinol. 1996;10:171–184.

    Article  PubMed  CAS  Google Scholar 

  53. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997;11:179–186.

    Article  PubMed  CAS  Google Scholar 

  54. Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A. 1997;94:7239–7244.

    Article  PubMed  CAS  Google Scholar 

  55. Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998;93:841–850.

    Article  PubMed  CAS  Google Scholar 

  56. Klingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF. Specific recruitment of SHPTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell. 1995;80:729–738.

    Article  PubMed  CAS  Google Scholar 

  57. Ram PA, Waxman DJ. Interaction of growth hormone-activated STATs with SH2containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase. J Biol Chem. 1997;272:17694–17702.

    Article  PubMed  CAS  Google Scholar 

  58. Ali S, Chen Z, Lebrun JJ, Vogel W, Kharitonenkov A, Kelly PA, Ullrich A. PTP1D is a positive regulator of the prolactin signal leading to beta-casein promoter activation. EMBO J. 1996;15:135–142.

    PubMed  CAS  Google Scholar 

  59. Berchtold S, Volarevic S, Moriggl R, Mercep M, Groner B. Dominant negative variants of the SHP-2 tyrosine phosphatase inhibit prolactin activation of Jak2 (Janus kinase 2) and induction of Stat5 (signal transducer and activator of transcription 5)-dependent transcription. Mol Endocrinol. 1998;12:556–567.

    Article  PubMed  CAS  Google Scholar 

  60. Yu C, Jin YJ, Burakoff SJ. Cytosolic tyrosine dephosphorylation of STATS. Potential role of SHP-2 in STATS regulation. J Biol Chem. 2000;275:599–604.

    Article  PubMed  CAS  Google Scholar 

  61. Peters CA, Maizels ET, Hunzicker-Dunn M. Activation of PKC delta in the rat corpus luteum during pregnancy. Potential role of prolactin signaling. J Biol Chem. 1999;274:37499–37505.

    Article  PubMed  CAS  Google Scholar 

  62. Peters CA, Maizels ET, Robertson MC, Shiu RPC, Soloff MS, Hunzicker-Dunn M. Induction of relaxin messenger RNA expression in response to prolactin receptor activation requires protein kinase C delta signaling. Mol Endocrinol. 2000;14:576–590.

    Article  PubMed  CAS  Google Scholar 

  63. Cutler RJ, Maizels ET, Hunzicker-Dunn M. Delta protein kinase-C in the rat ovary: estrogen regulation and localization. Endocrinology. 1994;135:1669–1678.

    Article  PubMed  CAS  Google Scholar 

  64. Fanjul LF, Marrero I, Gonzalez J, Quintana J, Santana P, Estevez F, Mato JM, Ruiz de Galarreta CM. Does oligosaccharide-phosphatidylinositol (glycosyl-phosphatidylinositol) hydrolysis mediate prolactin signal transduction in granulosa cells? Eur J Biochem. 1993;216:747–755.

    Article  PubMed  CAS  Google Scholar 

  65. Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science. 1998;281:2042–2045.

    Article  PubMed  Google Scholar 

  66. Wen Z, Zhong Z, Darnell JE, Jr. Maximal activation of transcription by Stat 1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 1995;82:241–250.

    Article  PubMed  CAS  Google Scholar 

  67. Wen Z, Darnell JE, Jr. Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Statl and Stat3. Nucleic Acids Res. 1997;25:2062–2067.

    Article  PubMed  CAS  Google Scholar 

  68. Uddin S, Majchrzak B, Wang PC, Modi S, Khan MK, Fish EN, Platanias LC. Interferon-dependent activation of the serine kinase PI 3’-kinase requires engagement of the IRS pathway but not the Stat pathway. Biochem Biophys Res Commun. 2000;270:158–162.

    Article  PubMed  CAS  Google Scholar 

  69. Yokogami K, Wakisaka S, Avruch J, Reeves SA. Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol. 2000;10:47–50.

    Article  PubMed  CAS  Google Scholar 

  70. Zhang X, Blenis J, Li HC, Schindler C, Chen-Kiang S. Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science. 1995;267:1990–1994.

    Article  PubMed  CAS  Google Scholar 

  71. Ng J CD. STAT3 is a serine kinase target in T lymphocytes. Interleukin 2 and T cell antigen receptor signals converge upon serine 727. J Biol Chem 1997;272:24542–24549.

    Article  PubMed  CAS  Google Scholar 

  72. Robker RL, Richards JS. Hormonal control of the cell cycle in ovarian cells: proliferation versus differentiation. Biol Reprod. 1998;59:476–482.

    Article  PubMed  CAS  Google Scholar 

  73. Richards JS, Fitzpatrick SL, Clemens JW, Morris JK, Alliston T, Sirois J. Ovarian cell differentiation: a cascade of multiple hormones, cellular signals, and regulated genes. Recent Prog Horm Res. 1995;50:223–254.

    PubMed  CAS  Google Scholar 

  74. Richards JS. Hormonal control of gene expression in the ovary. Endocr Rev. 1994;15:725–751.

    PubMed  CAS  Google Scholar 

  75. Richards JS, Russell DL, Robker RL, Dajee M, Alliston TN. Molecular mechanisms of ovulation and luteinization. Mol Cell Endocrinol. 1998;145:47–54.

    Article  PubMed  CAS  Google Scholar 

  76. Robker RL, Richards JS. Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27Kip 1. Mol Endocrinol. 1998;12:924–940.

    Article  PubMed  CAS  Google Scholar 

  77. Tong W, Kiyokawa H, Soos TJ, Park MS, Soares VC, Manova K, Pollard JW, Koff A. The absence of p27Kipl, an inhibitor of G1 cyclin-dependent kinases, uncouples differentiation and growth arrest during the granulosa-luteal transition. Cell Growth Differ. 1998;9:787–794.

    PubMed  CAS  Google Scholar 

  78. Camp TA, Rahal JO, Mayo KE. Cellular localization and hormonal regulation of follicle-stimulating hormone and luteinizing hormone receptor messenger RNAs in the rat ovary. Mol Endocrinol. 1991;5:1405–1417.

    Article  PubMed  CAS  Google Scholar 

  79. Krasnow JS, Hickey GJ, Richards JS. Regulation of aromatase mRNA and estradiol biosynthesis in rat ovarian granulosa and luteal cells by prolactin. Mol Endocrinol. 1990;4:13–12.

    Article  PubMed  CAS  Google Scholar 

  80. Alloiteau JJ. Hypertrophie du corps jaune chez la ratte a antehypophyse greffee dans le rein et recevant du propionate de testosterone. Secretion d’un oestrogene par le corps jaune. Current Research of Academic Science (Paris). 1959;249:1718–1724.

    Google Scholar 

  81. Ryazanov AG, Spirin AS. Phosphorylation of elongation factor 2: a mechanism to shut off protein synthesis for reprogramming gene expression. In: Ilan J, ed. Translational Regulation of Gene Expression. New York: Plenum; 1993:433–455.

    Chapter  Google Scholar 

  82. Albarracin CT, Palfrey HC, Duan WR, Rao MC, Gibori G. Prolactin regulation of the calmodulin-dependent protein kinase III elongation factor-2 system in the rat corpus luteum. J Biol Chem. 1994;269:7772–7776.

    PubMed  CAS  Google Scholar 

  83. Rao MC, Palfrey HC, Nash NT, Greisman A, Jayatilak PG, Gibori G. Effects of estradiol on calcium-specific protein phosphorylation in the rat corpus luteum. Endocrinology. 1987;120:1010–1018.

    Article  PubMed  CAS  Google Scholar 

  84. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT, Jr. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev. 1995;16:143–163.

    PubMed  CAS  Google Scholar 

  85. Zhou J, Chin E, Bondy C. Cellular pattern of insulin-like growth factor-I (IGF-I) and IGF-I receptor gene expression in the developing and mature ovarian follicle. Endocrinology. 1991;129:3281–3288.

    Article  PubMed  CAS  Google Scholar 

  86. Parmer TG, Roberts CT, Jr., LeRoith D, Adashi EY, Khan I, Solan N, Nelson S, Zilberstein M, Gibori G. Expression, action, and steroidal regulation of insulin-like growth factor-I (IGF-I) and IGF-I receptor in the rat corpus luteum: their differential role in the two cell populations forming the corpus luteum. Endocrinology. 1991;129:2924–2932.

    Article  PubMed  CAS  Google Scholar 

  87. Sugino N, Telleria CM, Tessier C, Gibori G. Regulation and role of the insulin-like growth factor I system in rat luteal cells. J Reprod Fertil. 1999;115:349–355.

    Article  PubMed  CAS  Google Scholar 

  88. Sugino N, Zilberstein M, Srivastava RK, Telleria CM, Nelson SE, Risk M, Chou JY, Gibori G. Establishment and characterization of a simian virus 40-transformed temperature-sensitive rat luteal cell line. Endocrinology. 1998;139:1936–1942.

    Article  PubMed  CAS  Google Scholar 

  89. Fridovich I. Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci. 1999;893:13–18.

    Article  PubMed  CAS  Google Scholar 

  90. McCord JM. Superoxide radical: controversies, contradictions, and paradoxes. Proc Soc Exp Biol Med. 1995;209:112–117.

    PubMed  CAS  Google Scholar 

  91. Riley JC, Behrman HR. In vivo generation of hydrogen peroxide in the rat corpus luteum during luteolysis. Endocrinology. 1991;128:1749–1753.

    Article  PubMed  CAS  Google Scholar 

  92. Behrman HR, Aten RF. Evidence that hydrogen peroxide blocks hormone-sensitive cholesterol transport into mitochondria of rat luteal cells. Endocrinology. 1991;128:2958–2966.

    Article  PubMed  CAS  Google Scholar 

  93. Kodaman PH, Aten RF, Behrman HR. Lipid hydroperoxides evoke antigonadotropic and antisteroidogenic activity in rat luteal cells. Endocrinology. 1994;135:2723–2730.

    Article  PubMed  CAS  Google Scholar 

  94. Musicki B, Aten RF, Behrman HR. Inhibition of protein synthesis and hormone-sensitive steroidogenesis in response to hydrogen peroxide in rat luteal cells. Endocrinology. 1994;134:588–595.

    Article  PubMed  CAS  Google Scholar 

  95. Endo T, Aten RF, Leykin L, Behrman HR. Hydrogen peroxide evokes antisteroidogenic and antigonadotropic actions in human granulosa luteal cells. J Clin Endocrinol Metab. 1993;76:337–342.

    Article  PubMed  CAS  Google Scholar 

  96. Sugino N, Takiguchi S, Kashida S, Karube A, Nakamura Y, Kato H. Superoxide dismutase expression in the human corpus luteum during the menstrual cycle and in early pregnancy. Mol Hum Reprod. 2000;6:19–25.

    Article  PubMed  CAS  Google Scholar 

  97. Sugino N, Nakamura Y, Takeda O, Ishimatsu M, Kato H. Changes in activities of superoxide dismutase and lipid peroxide in corpus luteum during pregnancy in rats. J Reprod Fertil. 1993;97:347–351.

    Article  PubMed  CAS  Google Scholar 

  98. Sugino N, Telleria CM, Gibori G. Differential regulation of copper-zinc superoxide dismutase and manganese superoxide dismutase in the rat corpus luteum: induction of manganese superoxide dismutase messenger ribonucleic acid by inflammatory cytokines. Biol Reprod. 1998;59:208–215.

    Article  PubMed  CAS  Google Scholar 

  99. Sugino N, Hirosawa-Takamori M, Zhong L, Telleria CM, Shiota K, Gibori G. Hormonal regulation of copper-zinc superoxide dismutase and manganese superoxide dismutase messenger ribonucleic acid in the rat corpus luteum: induction by prolactin and placental lactogens. Biol Reprod. 1998;59:599–605.

    Article  PubMed  CAS  Google Scholar 

  100. Gaytan F, Morales C, Bellido C, Aguilar E, Sanchez-Criado JE. Role of prolactin in the regulation of macrophages and in the proliferative activity of vascular cells in newly formed and regressing rat corpora lutea. Biol Reprod. 1997;57:478–486.

    Article  PubMed  CAS  Google Scholar 

  101. Tamura H, Greenwald GS. Angiogenesis and its hormonal control in the corpus luteum of the pregnant rat. Biol Reprod. 1987;36:1149–1154.

    Article  PubMed  CAS  Google Scholar 

  102. Gibori G, Richards JS, Keyes PL. Synergistic effects of prolactin and estradiol in the luteotropic process in the pregnant rat: regulation of estradiol receptor by prolactin. Biol Reprod. 1979;21:419–423.

    Article  PubMed  CAS  Google Scholar 

  103. Telleria CM, Zhong L, Deb S, Srivastava RK, Park KS, Sugino N, Park-Sarge OK, Gibori G. Differential expression of the estrogen receptors alpha and beta in the rat corpus luteum of pregnancy: regulation by prolactin and placental lactogens. Endocrinology. 1998;139:2432–2442.

    Article  PubMed  CAS  Google Scholar 

  104. Gibori G, Khan I, Warshaw ML, McLean MP, Puryear TK, Nelson S, Durkee TJ, Azhar S, Steinschneider A, Rao MC. Placental-derived regulators and the complex control of luteal cell function. Recent Prog Horm Res. 1988;44:377–429.

    PubMed  CAS  Google Scholar 

  105. Guthridge M, Bertolini J, Cowling J, Hearn MT. Localization of bFGF mRNA in cyclic rat ovary, diethylstilbesterol primed rat ovary, and cultured rat granulosa cells. Growth Factors. 1992;7:15–25.

    Article  PubMed  CAS  Google Scholar 

  106. Gospodarowicz D, Massoglia S, Cheng J, Fujii DK. Effect of fibroblast growth factor and lipoproteins on the proliferation of endothelial cells derived from bovine adrenal cortex, brain cortex, and corpus luteum capillaries. J Cell Physiol. 1986;127:121–136.

    Article  PubMed  CAS  Google Scholar 

  107. Doraiswamy V, Knutson DL, Grazul-Bilska AT, Redmer DA, Reynolds LP. Fibroblast growth factor receptor (FGFR)-1 and -2 in the ovine corpus luteum throughout the estrous cycle. Growth Factors. 1998;16:125–135.

    Article  PubMed  CAS  Google Scholar 

  108. Matsuyama S, Takahashi M. Immunoreactive (ir)-transforming growth factor (TGF)beta in rat corpus luteum: ir-TGF beta is expressed by luteal macrophages. Endocr J. 1995;42:203–217.

    Article  PubMed  CAS  Google Scholar 

  109. RayChaudhury AD, Amore PA. Endothelial cell regulation by transforming growth factor-beta. J Cell Biochem. 1991;47:224–229.

    Article  PubMed  CAS  Google Scholar 

  110. Pepper MS, Belin D, Montesano R, Orci L, Vassalli JD. Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol. 1990;111:743–755.

    Article  PubMed  CAS  Google Scholar 

  111. Reynolds LP, Redmer DA. Growth and development of the corpus luteum. J Reprod Fertil Suppl. 1999;54:181–191.

    PubMed  CAS  Google Scholar 

  112. Phillips HS, Hains J, Leung DW, Ferrara N. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology. 1990;127:965–967.

    Article  PubMed  CAS  Google Scholar 

  113. Shweiki D, Itin A, Neufeld G, Gitay-Goren H, Keshet E. Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis. J Clin Invest. 1993;91:2235–2243.

    Article  PubMed  CAS  Google Scholar 

  114. Redmer DA, Dai Y, Li J, Charnock-Jones DS, Smith SK, Reynolds LP, Moor RM. Characterization and expression of vascular endothelial growth factor (VEGF) in the ovine corpus luteum. J Reprod Fertil. 1996;108:157–165.

    Article  PubMed  CAS  Google Scholar 

  115. Garrido C, Saule S, Gospodarowicz D. Transcriptional regulation of vascular endothelial growth factor gene expression in ovarian bovine granulosa cells. Growth Factors. 1993;8:109–117.

    Article  PubMed  CAS  Google Scholar 

  116. Ravindranath N, Little-Ihrig L, Phillips HS, Ferrara N, Zeleznik AJ. Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary. Endocrinology. 1992;131:254–260.

    Article  PubMed  CAS  Google Scholar 

  117. Christenson LK, Stouffer RL. Follicle-stimulating hormone and luteinizing hormone/ chorionic gonadotropin stimulation of vascular endothelial growth factor production by macaque granulosa cells from pre-and periovulatory follicles. J Clin Endocrinol Metab. 1997;82:2135–2142.

    Article  PubMed  CAS  Google Scholar 

  118. Yan Z, Weich HA, Bernart W, Breckwoldt M, Neulen J. Vascular endothelial growth factor (VEGF) messenger ribonucleic acid (mRNA) expression in luteinized human granulosa cells in vitro. J Clin Endocrinol Metab. 1993;77:1723–1725.

    Article  PubMed  CAS  Google Scholar 

  119. Kamat BR, Brown LF, Manseau EJ, Senger DR, Dvorak HF. Expression of vascular permeability factor/vascular endothelial growth factor by human granulosa and theca lutein cells. Role in corpus luteum development. Am J Pathol. 1995;146:157–165.

    PubMed  CAS  Google Scholar 

  120. Gordon JD, Mesiano S, Zaloudek CJ, Jaffe RB. Vascular endothelial growth factor localization in human ovary and fallopian tubes: possible role in reproductive function and ovarian cyst formation. J Clin Endocrinol Metab. 1996;81:353–359.

    Article  PubMed  CAS  Google Scholar 

  121. Fraser HM, Dickson SE, Lunn SF, Wulff C, Morris KD, Carroll VA, Bicknell R. Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor. Endocrinology. 2000;141:995–1000.

    Article  PubMed  CAS  Google Scholar 

  122. Ferrara N, Chen H, Davis-Smyth T, Gerber HP, Nguyen TN, Peers D, Chisholm V, Hillan KJ, Schwall RH. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med. 1998;4:336–340.

    Article  PubMed  CAS  Google Scholar 

  123. Lee A, Christenson LK, Patton PE, Burry KA, Stouffer RL. Vascular endothelial growth factor production by human luteinized granulosa cells in vitro. Hum Reprod. 1997;12:2756–2761.

    Article  PubMed  CAS  Google Scholar 

  124. Segaloff D, Wang HY, Richards JS. Hormonal regulation of luteinizing hormone/chorionic gonadotropin receptor mRNA in rat ovarian cells during follicular development and luteinization. Mol Endocrinol. 1990;4:1856–1865.

    Article  PubMed  CAS  Google Scholar 

  125. Gaddy-Kurten D, Richards JS. Regulation of alpha 2-macroglobulin by luteinizing hormone and prolactin during cell differentiation in the rat ovary. Mol Endocrinol. 1991;5:1280–1291.

    Article  PubMed  CAS  Google Scholar 

  126. Borth W. Alpha 2-macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J. 1992;6:3345–3353.

    PubMed  CAS  Google Scholar 

  127. da Silva G, Teixeira N, Bell SC. Major secretory product of the mesometrial decidua in the rat, a variant of alpha-2-macroglobulin, binds insulin-like growth factor I via a protease-dependent mechanism. Mol Reprod Dev. 1996;44:103–110.

    Article  PubMed  Google Scholar 

  128. Huang SO, Grady P, Huang JS. Human transforming growth factor beta.alpha 2macroglobulin complex is a latent form of transforming growth factor beta. J Biol Chem. 1988;263:1535–1541.

    PubMed  CAS  Google Scholar 

  129. Dennis PA, Saksela O, Harpel P, Rifkin DB. Alpha 2-macroglobulin is a binding protein for basic fibroblast growth factor. J Biol Chem. 1989;264:7210–7216.

    PubMed  CAS  Google Scholar 

  130. Rothchild I. The regulation of the mammalian corpus luteum. Recent Prog Horm Res. 1981;37:183–298.

    PubMed  CAS  Google Scholar 

  131. Galosy SS, Talamantes F. Luteotropic actions of placental lactogens at midpregnancy in the mouse. Endocrinology. 1995;136:3993–4003.

    Article  PubMed  CAS  Google Scholar 

  132. Yuan W, Greenwald GS. Progesterone production in vitro by mouse luteal cells: response to follicle-stimulating hormone, luteinizing hormone, and prolactin. Proc Soc Exp Biol Med. 1997;214:265–270.

    PubMed  CAS  Google Scholar 

  133. Thordarson G, Galosy S, Gudmundsson GO, Newcomer B, Sridaran R, Talamantes F. Interaction of mouse placental lactogens and androgens in regulating progesterone release in cultured mouse luteal cells. Endocrinology. 1997;138:3236–3241.

    Article  PubMed  CAS  Google Scholar 

  134. Yuan W, Greenwald GS. Luteotropic effects of follicle-stimulating hormone (FSH): I. FSH has in vitro luteotropic and synergistic effects with luteinizing hormone and prolactin on progesterone production by hamster luteal cells during pregnancy. Biol Reprod. 1994;51:43–49.

    Article  PubMed  CAS  Google Scholar 

  135. Crisp TM. Hormone requirements for early maintenance of rat granulosa cell cultures. Endocrinology. 1977;101:1286–1297.

    Article  PubMed  CAS  Google Scholar 

  136. Centola GM. Hormone requirements for long-term maintenance of rat granulosa cell cultures. Adv Exp Med Biol. 1979;112:225–233.

    Article  PubMed  CAS  Google Scholar 

  137. Matsuyama S, Shiota K, Tachi C, Nishihara M, Takahashi M. Splenic macrophages enhance prolactin and luteinizing hormone action in rat luteal cell cultures. Endocrinol Jpn. 1992;39:51–57.

    Article  PubMed  CAS  Google Scholar 

  138. Rajkumar K, Malinek J, Murphy BD. Effect of lipoproteins and luteotrophins on progesterone accumulation by luteal cells from the pregnant pig. Steroids. 1985;45:119–134.

    Article  PubMed  CAS  Google Scholar 

  139. Rajkumar K, Klingshorn P, Chedrese PJ, Murphy BD. Prolactin, LH, and estradiol-17 beta in utilization of lipoprotein substrate by porcine granulosa cells in vitro. Can J Physiol Pharmacol. 1988;66:561–566.

    Article  PubMed  CAS  Google Scholar 

  140. Chedrese PJ, Rajkumar K, Ly H, Murphy BD. Dose response of luteinized porcine granulosa cells in vitro to prolactin: dependency on pre-exposure to human chorionic gonadotrophin. Can J Physiol Pharmacol. 1988;66:1337–1340.

    Article  PubMed  CAS  Google Scholar 

  141. Murphy BD, Rajkumar K, Gonzalez Reyna A, Silversides DW. Control of luteal function in the mink (Mustela vison). J Reprod Fertil Suppl. 1993;47:181–188.

    PubMed  CAS  Google Scholar 

  142. McKibbin PE, Rajkumar K, Murphy BD. Role of lipoproteins and prolactin in luteal function in the ferret. Biol Reprod. 1984;30:1160–1166.

    Article  PubMed  CAS  Google Scholar 

  143. Alila HW, Rogo KO, Gombe S. Effects of prolactin on steroidogenesis by human luteal cells in culture. Fertil Steril. 1987;47:947–955.

    PubMed  CAS  Google Scholar 

  144. McNatty KP, Sawers RS, McNeilly AS. A possible role for prolactin in control of steroid secretion by the human Graafian follicle. Nature. 1974;250:653–655.

    Article  PubMed  CAS  Google Scholar 

  145. Ji TH, Ryu KS, Gilchrist R, Ji I. Interaction, signal generation, signal divergence, and signal transduction of LH/CG and the receptor. Recent Prog Horm Res. 1997;52:431–453.

    PubMed  CAS  Google Scholar 

  146. Davis JS. Mechanisms of hormone action: luteinizing hormone receptors and second-messenger pathways. Cuff Opin Obstet Gynecol. 1994;6:254–261.

    CAS  Google Scholar 

  147. Davis JS. Modulation of luteinizing hormone-stimulated inositol phosphate accumulation by phorbol esters in bovine luteal cells. Endocrinology. 1992;131:749–757.

    Article  PubMed  CAS  Google Scholar 

  148. Morris JK, Richards JS. Luteinizing hormone induces prostaglandin endoperoxide synthase-2 and luteinization in vitro by A-kinase and C-kinase pathways. Endocrinology. 1995;136:1549–1558.

    Article  PubMed  CAS  Google Scholar 

  149. Clark BJ, Wells J, King SR, Stocco DM. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem. 1994;269:28314–28322.

    PubMed  CAS  Google Scholar 

  150. Clark BJ, Soo SC, Caron KM, Ikeda Y, Parker KL, Stocco DM. Hormonal and developmental regulation of the steroidogenic acute regulatory protein. Mol Endocrinol. 1995;9:1346–1355.

    Article  PubMed  CAS  Google Scholar 

  151. Armstrong DT, Miller LV, Knudsen KA. Regulation of lipid metabolism and progesterone production in rat corpora lutea and ovarian interstitial elements by prolactin and luteinizing hormone. Endocrinology. 1969;85:393–401.

    Article  PubMed  CAS  Google Scholar 

  152. Holt JA, Richards JS, Midgley AR, Jr., Reichert LE, Jr. Effect of prolactin on LH receptor in rat luteal cells. Endocrinology. 1976;98:1005–1013.

    Article  PubMed  CAS  Google Scholar 

  153. Grinwich DL, Hichens M, Behrman HR. Control of the LH receptor by prolactin and prostaglandin F2alpha in rat corpora lutea. Biol Reprod. 1976;14:212–218.

    Article  PubMed  CAS  Google Scholar 

  154. Richards JS, Williams JJ. Luteal cell receptor content for prolactin (PRL) and luteinizing hormone (LH): regulation by LH and PRL. Endocrinology. 1976;99:1571–1581.

    Article  PubMed  CAS  Google Scholar 

  155. Piquette GN, LaPolt PS, Oikawa M, Hsueh AJ. Regulation of luteinizing hormone receptor messenger ribonucleic acid levels by gonadotropins, growth factors, and gonadotropin-releasing hormone in cultured rat granulosa cells. Endocrinology. 1991;128:2449–2456.

    Article  PubMed  CAS  Google Scholar 

  156. Gafvels M, Bjurulf E, Selstam G. Prolactin stimulates the expression of luteinizing hormone/chorionic gonadotropin receptor messenger ribonucleic acid in the rat corpus luteum and rescues early pregnancy from bromocriptine-induced abortion. Biol Reprod. 1992;47:534–540.

    Article  PubMed  CAS  Google Scholar 

  157. Bjurulf E, Selstam G, Olofsson JI. Increased LH receptor mRNA and extended corpus luteum function induced by prolactin and indomethacin treatment in vivo in hysterectomized pseudopregnant rats. J Reprod Fertil. 1994;102:139–145.

    Article  PubMed  CAS  Google Scholar 

  158. Khan I, Sridaran R, Johnson DC, Gibori G. Selective stimulation of luteal androgen biosynthesis by luteinizing hormone: comparison of hormonal regulation of P45017 alpha activity in corpora lutea and follicles. Endocrinology. 1987;121:1312–1319.

    Article  PubMed  CAS  Google Scholar 

  159. Hedin L, Rodgers RJ, Simpson ER, Richards JS. Changes in content of cytochrome P450(17)alpha, cytochrome P450scc, and 3-hydroxy-3-methylglutaryl CoA reductase in developing rat ovarian follicles and corpora lutea: correlation with theca cell steroidogenesis. Biol Reprod. 1987;37:211–223.

    Article  PubMed  CAS  Google Scholar 

  160. Bogovich K, Scales LM, Higginbottom E, Ewing LL, Richards JS. Short term androgen production by rat ovarian follicles and long term steroidogenesis by thecal explants in culture. Endocrinology. 1986;118:1379–1386.

    Article  PubMed  CAS  Google Scholar 

  161. Bogovich K, Richards JS. Androgen biosynthesis in developing ovarian follicles: evidence that luteinizing hormone regulates thecal 17 alpha-hydroxylase and C17–20lyase activities. Endocrinology. 1982;111:1201–1208.

    Article  PubMed  CAS  Google Scholar 

  162. Gibori G, Keyes PL, Richards JS. A role for intraluteal estrogen in the mediation of luteinizing hormone action on the rat corpus luteum during pregnancy. Endocrinology. 1978;103:162–169.

    Article  PubMed  CAS  Google Scholar 

  163. Gibori G, Rodway R, Rothchild I. The luteotrophic effect of estrogen in the rat: prevention by estradiol of the luteolytic effect of an antiserum to luteinizing hormone in the pregnant rat. Endocrinology. 1977;101:1683–1689.

    Article  PubMed  CAS  Google Scholar 

  164. MacDonald GJ. Maintenance of pregnancy in the rat in the absence of LH. Proc Soc Exp Biol Med. 1978;159:441–443.

    PubMed  CAS  Google Scholar 

  165. Gibori G, Keyes PL. Luteotropic role of estrogen in early pregnancy in the rat. Endocrinology. 1980;106:1584–1588.

    Article  PubMed  CAS  Google Scholar 

  166. Koike S, Sakai M, Muramatsu M. Molecular cloning and characterization of rat estrogen receptor cDNA. Nucleic Acids Res. 1987;15:2499–2513.

    Article  PubMed  CAS  Google Scholar 

  167. Walter P, Green S, Greene G, Krust A, Bornert JM, Jeltsch JM, Staub A, Jensen E, Scrace G, Waterfield M, et al. Cloning of the human estrogen receptor cDNA. Proc Natl Acad Sci U S A. 1985;82:7889–7893.

    Article  PubMed  CAS  Google Scholar 

  168. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Nad Acad Sci U S A. 1996;93:5925–5930.

    Article  CAS  Google Scholar 

  169. Frasor J, Zhong Z, Barkai U, Gibori GB, Mao J, Gibori G. Prolactin up-regulation of estrogen receptor alpha gene transcription is tyrosine kinase-dependent. In: Meeting of the Society for the Study of Reproduction. Pullman, WA: Society for the Study of Reproduction; 1999:162.

    Google Scholar 

  170. Frasor J, Kitamura T, Park-Sarge OK, Gibori G. Transcriptional regulation of estrogen receptor beta by prolactin. In: Meeting of the Society for the Study of Reproduction. Madison, WI: Society for the Study of Reproduction; 2000:276.

    Google Scholar 

  171. Gibori G, Sridaran R. Sites of androgen and estradiol production in the second half of pregnancy in the rat. Biol Reprod. 1981;24:249–256.

    Article  PubMed  CAS  Google Scholar 

  172. Gibori G, Chatterton RT, Chien JL. Ovarian and serum concentrations of androgen throughout pregnancy in the rat. Biol Reprod. 1979;21:53–56.

    Article  PubMed  CAS  Google Scholar 

  173. Matt DW, MacDonald GJ. In vitro progesterone and testosterone production by the rat placenta during pregnancy. Endocrinology. 1984;115:741–747.

    Article  PubMed  CAS  Google Scholar 

  174. Gibori G, Kraicer PF. Conversion of testosterone to estrogen by isolated corpora lutea of pregnancy in the rat. Biol Reprod. 1973;9:309–316.

    PubMed  CAS  Google Scholar 

  175. Jackson JA, Albrecht ED. The development of placental androstenedione and testosterone production and their utilization by the ovary for aromatization to estrogen during rat pregnancy. Biol Reprod. 1985;33:451–457.

    Article  PubMed  CAS  Google Scholar 

  176. Gibori G, Sridaran R, Basuray R. Control of aromatase activity in luteal and ovarian nonluteal tissue of pregnant rats. Endocrinology. 1982;111:781–788.

    Article  PubMed  CAS  Google Scholar 

  177. Hickey GJ, Chen SA, Besman MJ, Shively JE, Hall PF, Gaddy-Kurten D, Richards JS. Hormonal regulation, tissue distribution, and content of aromatase cytochrome P450 messenger ribonucleic acid and enzyme in rat ovarian follicles and corpora lutea: relationship to estradiol biosynthesis. Endocrinology. 1988;122:1426–1436.

    Article  PubMed  CAS  Google Scholar 

  178. Hickey GJ, Oonk RB, Hall PF, Richards JS. Aromatase cytochrome P450 and cholesterol side-chain cleavage cytochrome P450 in corpora lutea of pregnant rats: diverse regulation by peptide and steroid hormones. Endocrinology. 1989;125:1673–1682.

    Article  PubMed  CAS  Google Scholar 

  179. Nokelainen P, Peltoketo H, Vihko R, Vihko P. Expression cloning of a novel estrogenic mouse 17 beta-hydroxysteroid dehydrogenase/17-ketosteroid reductase (m17HSD7), previously described as a prolactin receptor-associated protein (PRAP) in rat. Mol Endocrinol. 1998;12:1048–1059.

    Article  PubMed  CAS  Google Scholar 

  180. Risk M, Duan W, Nelson S, Azhar S, Gibori G. Characterization of PRAP as a novel 17-beta hydroxysteroid dehydrogenase enzyme. In: Meeting of the Society for the Study of Reproduction. Pullman, WA: Society for the Study of Reproduction; 1999:162.

    Google Scholar 

  181. Duan WR, Parmer TG, Albarracin CT, Zhong L, Gibori G. PRAP, a prolactin receptor associated protein: its gene expression and regulation in the corpus luteum. Endocrinology. 1997;138:3216–3221.

    Article  PubMed  CAS  Google Scholar 

  182. Duan WR, Linzer DIH, Gibori G. Cloning and characterization of an ovarian-specific protein that associates with the short form of the prolactin receptor. J Biol Chem. 1996;271:15602–15607.

    Article  PubMed  CAS  Google Scholar 

  183. Sherwood OD, Downing SJ, Guico-Lamm ML, Hwang Ji, O Day-Bowman MB, Fields PA. The physiological effects of relaxin during pregnancy: studies in rats and pigs. Oxf Rev Reprod Biol. 1993;15:143–189.

    PubMed  CAS  Google Scholar 

  184. Bani D. Relaxin: a pleiotropic hormone. Gen Pharmacol. 1997;28:13–22.

    Article  PubMed  CAS  Google Scholar 

  185. Zhao L, Roche PJ, Gunnersen JM, Hammond VE, Tregear GW, Wintour EM, Beck F. Mice without a functional relaxin gene are unable to deliver milk to their pups. Endocrinology. 1999;140:445–453.

    Article  PubMed  CAS  Google Scholar 

  186. Felder KJ, Klindt J, Bolt DJ, Anderson LL. Relaxin and progesterone secretion as affected by luteinizing hormone and prolactin after hysterectomy in the pig. Endocrinology. 1988;122:1751–1760.

    Article  PubMed  CAS  Google Scholar 

  187. Li Y, Molina JR, Klindt J, Bolt DJ, Anderson LL. Prolactin maintains relaxin and progesterone secretion by aging corpora lutea after hypophysial stalk transection or hypophysectomy in the pig. Endocrinology. 1989;124:1294–1304.

    Article  PubMed  CAS  Google Scholar 

  188. Lao Guico MS, Sherwood OD. Effect of oestradiol-17 beta on ovarian and serum concentrations of relaxin during the second half of pregnancy in the rat. J Reprod Fertil. 1985;74:65–70.

    Article  CAS  Google Scholar 

  189. Goldsmith LT, Grob HS, Weiss G. In vitro induction of relaxin secretion in corpora lutea from nonpregnant rats. Ann N Y Acad Sci. 1982;380:60–74.

    Article  PubMed  CAS  Google Scholar 

  190. Golos TG, Sherwood OD. Control of corpus luteum function during the second half of pregnancy in the rat: a direct relationship between conceptus number and both serum and ovarian relaxin levels. Endocrinology. 1982; 111:872–878.

    Article  PubMed  CAS  Google Scholar 

  191. Goldsmith LT, De La Cruz JL, Weiss G, Castracane VD. Steroid effects on relaxin secretion in the rat. Biol Reprod. 1982;27:886–890.

    Article  PubMed  CAS  Google Scholar 

  192. Peters CA, Cutler RE, Maizels ET, Robertson MC, Shiu RP, Fields P, Hunzicker-Dunn M. Regulation of PKC delta expression by estrogen and rat placental lactogen-1 in luteinized rat ovarian granulosa cells. Mol Cell Endocrinol. 2000;162:181–191.

    Article  PubMed  CAS  Google Scholar 

  193. Everett JW. Hormonal factors responsible for deposition of cholesterol in the corpus luteum of the rat. Endocrinology. 1947;41:364–377.

    Article  PubMed  CAS  Google Scholar 

  194. Zarrow MX, Clark JH. Gonadotropin regulation of ovarian cholesterol levels in the rat. Endocrinology. 1969;84:340–346.

    Article  PubMed  CAS  Google Scholar 

  195. Armstrong DT, Knudsen KA, Miller LS. Effects of prolactin upon cholesterol metabolism and progesterone biosynthesis in corpora lutea of rats hyophysectomized during pseudopregnancy. Endocrinology. 1970;86:634–641.

    Article  PubMed  CAS  Google Scholar 

  196. Azhar S, Khan I, Chen YD, Reaven GM, Gibori G. Regulation of luteal cell 3-hydroxy3-methylglutaryl coenzyme A reductase activity by estradiol. Biol Reprod. 1985;32:333–341.

    Article  PubMed  CAS  Google Scholar 

  197. Puryear TK, McLean MP, Khan I, Gibori G. Mechanism for control of hydroxymethylglutaryl-coenzyme A reductase and cytochrome P-450 side chain cleavage message and enzyme in the corpus luteum. Endocrinology. 1990;126:2910–2918.

    Article  PubMed  CAS  Google Scholar 

  198. Gwynne JT, Strauss JF. The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr Rev. 1982;3:299–329.

    Article  PubMed  CAS  Google Scholar 

  199. Andersen JM, Dietschy JM. Relative importance of high and low density lipoproteins in the regulation of cholesterol synthesis in the adrenal gland, ovary, and testis of the rat. J Biol Chem. 1978;253:9024–9032.

    PubMed  CAS  Google Scholar 

  200. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996;271:518–520.

    Article  PubMed  CAS  Google Scholar 

  201. Rajkumar K, Martinuk SD, Agu GO, Murphy BD. In vitro binding and utilization of lipoproteins by luteal cells from ferrets treated with dopaminergic drugs during pseudopregnancy. Gen Comp Endocrinol. 1987;67:282–291.

    Article  PubMed  CAS  Google Scholar 

  202. Rajkumar K, Ly H, Chedrese PJ, Murphy BD. Effect of prolactin and cyclic AMP on 125I-labelled low density lipoprotein uptake and metabolism by luteinized porcine granulosa cells in culture. Can J Physiol Pharmacol. 1988;66:1450–1454.

    Article  PubMed  CAS  Google Scholar 

  203. Rajkumar K, Couture RL, Murphy BD. High density lipoprotein uptake and utilization by rat corpora lutea: the effects of prolactin and PGF 2 alpha. In: Strauss JF, Menon KMJ, eds. Lipoprotein and cholesterol metabolism in steroidogenic tissues. Philadelphia: George F. Stickley Company; 1985:147–154.

    Google Scholar 

  204. Menon M, Peegel H, Menon KM. Lipoprotein augmentation of human chorionic gonadotropin and prolactin stimulated progesterone synthesis by rat luteal cells. J Steroid Biochem. 1985;22:79–84.

    Article  PubMed  CAS  Google Scholar 

  205. Murphy BD, Rajkumar K, McKibbin PE, Macdonald GJ, Buhr MM, Grinwich DL. The effects of hypophysectomy and administration of pituitary hormones on luteal function and uptake of high density lipoproteins by luteinized ovaries and adrenals of the rat. Endocrinology. 1985;116:1587–1597.

    Article  PubMed  CAS  Google Scholar 

  206. Rajkumar K, Couture RL, Murphy BD. Binding of high-density lipoproteins to luteal membranes: the role of prolactin, luteinizing hormone, and circulating lipoproteins. Biol Reprod. 1985;32:546–555.

    Article  PubMed  CAS  Google Scholar 

  207. Azhar S, Nomoto A, Leers-Sucheta S, Reaven E. Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroidogenic cell model. J Lipid Res. 1998;39:1616–1628.

    PubMed  CAS  Google Scholar 

  208. Reaven E, Nomoto A, Leers-Sucheta S, Temel R, Williams DL, Azhar S. Expression and microvillar localization of scavenger receptor, class B, type I (a high density lipoprotein receptor) in luteinized and hormone-desensitized rat ovarian models. Endocrinology. 1998;139:2847–2856.

    Article  PubMed  CAS  Google Scholar 

  209. Li X, Peegel H, Menon KM. In situ hybridization of high density lipoprotein (scavenger, type 1) receptor messenger ribonucleic acid (mRNA) during folliculogenesis and luteinization: evidence for mRNA expression and induction by human chorionic gonadotropin specifically in cell types that use cholesterol for steroidogenesis. Endocrinology. 1998;139:3043–3049.

    Article  PubMed  CAS  Google Scholar 

  210. Trigatti B, Rayburn H, Vinais M, Braun A, Miettinen H, Penman M, Hertz M, Schrenzel M, Amigo L, Rigotti A, Krieger M. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A. 1999;96:9322–9327.

    Article  PubMed  CAS  Google Scholar 

  211. Yeaman SJ. Hormone-sensitive lipase-a multipurpose enzyme in lipid metabolism. Biochim Biophys Acta. 1990;1052:128–132.

    Article  PubMed  CAS  Google Scholar 

  212. Hui DY. Molecular biology of enzymes involved with cholesterol ester hydrolysis in mammalian tissues. Biochim Biophys Acta. 1996;1303:1–14.

    Article  PubMed  Google Scholar 

  213. Behrman HR, Orczyk GP, Macdonald GJ, Greep RO. Prolactin induction of enzymes controlling luteal cholesterol ester turnover. Endocrinology. 1970;87:1251–1256.

    Article  PubMed  CAS  Google Scholar 

  214. Klemcke HG, Brinkley HJ. Effects of bromocriptine and PRL on luteal and adrenal cholesterol ester hydrolase and serum progesterone concentrations in mature pseudopregnant rats. Biol Reprod. 1980;22:1029–1039.

    Article  PubMed  CAS  Google Scholar 

  215. Aten RF, Kolodecik TR, Macdonald GJ, Behrman HR. Modulation of cholesteryl ester hydrolase messenger ribonucleic acid levels, protein levels, and activity in the rat corpus luteum. Biol Reprod. 1995;53:1110–1117.

    Article  PubMed  CAS  Google Scholar 

  216. Oonk RB, Krasnow JS, Beattie WG, Richards JS. Cyclic AMP-dependent and - independent regulation of cholesterol side chain cleavage cytochrome P-450 (P-450scc) in rat ovarian granulosa cells and corpora lutea. cDNA and deduced amino acid sequence of rat P- 450scc. J Biol Chem. 1989;264:21934–21942.

    PubMed  CAS  Google Scholar 

  217. Bignon C, Daniel N, Kermabon AY, Djiane J. Prolactin induces growth inhibition and promotes differentiation of CHO cells stably transfected with prolactin receptor complementary DNA. FEBS Lett. 1995;358:84–88.

    Article  PubMed  CAS  Google Scholar 

  218. Jones PB, Valk CA, Hsueh AJ. Regulation of progestin biosynthetic enzymes in cultured rat granulosa cells: effects of prolactin, beta 2-adrenergic agonist, human chorionic gonadotropin and gonadotropin releasing hormone. Biol Reprod. 1983;29:572–585.

    Article  PubMed  CAS  Google Scholar 

  219. Feltus FA, Groner B, Melner MH. Stat5-mediated regulation of the human type II 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene: activation by prolactin. Mol Endocrinol. 1999;13:1084–1093.

    Article  PubMed  CAS  Google Scholar 

  220. Lamprecht SA, Lindner HR, Strauss JE. Induction of 20alpha-hydroxysteroid dehydrogenase in rat corpora lutea by pharmacological blockade of pituitary prolactin secretion. Biochim Biophys Acta. 1969;187:133–143.

    Article  PubMed  CAS  Google Scholar 

  221. Lahav M, Lamprecht SA, Amsterdam A, Lindner HR. Suppression of 20 alphahydroxysteroid dehydrogenase activity in cultured rat luteal cells by prolactin. Mol Cell Endocrinol. 1977;6:293–302.

    Article  PubMed  CAS  Google Scholar 

  222. Albarracin CT, Gibori G. Prolactin action on luteal protein expression in the corpus luteum. Endocrinology. 1991;129:1821–1830.

    Article  PubMed  CAS  Google Scholar 

  223. Mao J, Duan WR, Albarracin CT, Parmer TG, Gibori G. Isolation and characterization of a rat luteal cDNA encoding 20 alpha-hydroxysteroid dehydrogenase. Biochem Biophys Res Commun. 1994;201:1289–1295.

    Article  PubMed  CAS  Google Scholar 

  224. Miura R, Shiota K, Noda K, Yagi S, Ogawa T, Takahashi M. Molecular cloning of cDNA for rat ovarian 20 alpha-hydroxysteroid dehydrogenase (HSD1). Biochem J. 1994;299:561–567.

    PubMed  CAS  Google Scholar 

  225. Albarracin CT, Parmer TG, Duan WR, Nelson SE, Gibori G. Identification of a major prolactin-regulated protein as 20 alpha-hydroxysteroid dehydrogenase: coordinate regulation of its activity, protein content, and messenger ribonucleic acid expression. Endocrinology. 1994;134:2453–2460.

    Article  PubMed  CAS  Google Scholar 

  226. Yamanouchi K, Yamanouchi S, Aoki M, Matsuyama S, Nishihara M, Takahashi M. Effect of calyculin-A, phosphatase inhibitor, on 20 alpha-hydroxysteroid dehydrogenase activity in rat luteal cell culture. Endocr J. 1993;40:699–704.

    Article  PubMed  CAS  Google Scholar 

  227. Zhong L, Ou J, Barkai U, Mao JF, Frasor J, Gibori G. Molecular cloning and characterization of the rat ovarian 20 alpha-hydroxysteroid dehydrogenase gene. Biochem Biophys Res Commun. 1998;249:797–803.

    Article  PubMed  CAS  Google Scholar 

  228. O’Neal KD, Yu-Lee LY. Differential signal transduction of the short, Nb2, and long prolactin receptors. Activation of interferon regulatory factor-1 and cell proliferation. J Biol Chem. 1994;269:26076–26082.

    PubMed  Google Scholar 

  229. Yu-Lee LY, Hrachovy JA, Stevens AM, Schwarz LA. Interferon-regulatory factor 1 is an immediate-early gene under transcriptional regulation by prolactin in Nb2 T cells. Mol Cell Biol. 1990;10:3087–3094.

    PubMed  CAS  Google Scholar 

  230. Malven PV. Luteotrophic and luteolytic responses to prolactin in hypophysectomized rats. Endocrinology. 1969;84:1224–1229.

    Article  PubMed  CAS  Google Scholar 

  231. Bowen JM, Keyes PL, Warren JS, Townson DH. Prolactin-induced regression of the rat corpus luteum: expression of monocyte chemoattractant protein-1 and invasion of macrophages. Biol Reprod. 1996;54:1120–1127.

    Article  PubMed  CAS  Google Scholar 

  232. Martel C, Labrie C, Dupont E, Couet J, Trudel C, Rheaume E, Simard J, Luu-The V, Pelletier G, Labrie F. Regulation of 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase expression and activity in the hypophysectomized rat ovary: interactions between the stimulatory effect of human chorionic gonadotropin and the luteolytic effect of prolactin. Endocrinology. 1990;127:2726–2737.

    Article  PubMed  CAS  Google Scholar 

  233. Martel C, Gagne D, Couet J, Labrie Y, Simard J, Labrie F. Rapid modulation of ovarian 3 beta-hydroxysteroid dehydrogenase/delta 5- delta 4 isomerase gene expression by prolactin and human chorionic gonadotropin in the hypophysectomized rat. Mol Cell Endocrinol. 1994;99:63–71.

    Article  PubMed  CAS  Google Scholar 

  234. Billeter E, Fluckinger E. Evidence for a luteolytic function of prolactin in the intact cyclic rat using 2-Br-alpha-Ergokryptine (CB 154). Experientia. 1971;27:464–465.

    Article  PubMed  CAS  Google Scholar 

  235. Wuttke W, Meites J. Luteolytic role of prolactin during the estrous cycle of the rat. Proc Soc Exp Biol Med. 1971;137:988–991.

    PubMed  CAS  Google Scholar 

  236. Taya K, Greenwald GS. In vivo and in vitro ovarian steroidogenesis in the long term hypophysectomized rat. Endocrinology. 1982;110:390–397.

    Article  PubMed  CAS  Google Scholar 

  237. Smith PE. Hypophysectomy and a replacement therapy in the rat. Amer J Anat. 1930;45:205–273.

    Article  Google Scholar 

  238. Matsuyama S, Chang KT, Kanuka H, Ohnishi M, Ikeda A, Nishihara M, Takahashi M. Occurrence of deoxyribonucleic acid fragmentation during prolactin-induced structural luteolysis in cycling rats. Biol Reprod. 1996;54:1245–1251.

    Article  PubMed  CAS  Google Scholar 

  239. Kanuka H, Matsuyama S, Ohnishi M, Matsumoto Y, Nishihara M, Takahashi M. Prolactin expresses differential effects on apoptotic cell death of luteal cells in vivo and in vitro. Endocr J. 1997;44:11–22.

    Article  PubMed  CAS  Google Scholar 

  240. King KL, Cidlowski JA. Cell cycle regulation and apoptosis. Annu Rev Physiol. 1998;60:601–617.

    Article  PubMed  CAS  Google Scholar 

  241. Kiya T, Endo T, Goto T, Yamamoto H, Ito E, Kudo R, Behrman HR. Apoptosis and PCNA expression induced by prolactin in structural involution of the rat corpus luteum. J Endocrinol Invest. 1998;21:276–283.

    PubMed  CAS  Google Scholar 

  242. Brannstrom M, Giesecke L, Moore IC, van den Heuvel CJ, Robertson SA. Leukocyte subpopulations in the rat corpus luteum during pregnancy and pseudopregnancy. Biol Reprod. 1994;50:1161–1167.

    Article  PubMed  CAS  Google Scholar 

  243. Dore MA. Structural aspects of luteal function and regression in the ovary of the domestic dog. J Reprod Fertil Suppl. 1989;39:41–53.

    PubMed  CAS  Google Scholar 

  244. Bagavandoss P, Kunkel SL, Wiggins RC, Keyes PL. Tumor necrosis factor-a (TNF-a) production and localization of macrophages and T lymphocytes in the rabbit corpus luteum. Endocrinology. 1988;122:1185–1187.

    Article  PubMed  CAS  Google Scholar 

  245. Hume DA, Halpin D, Charlton H, Gordon S. The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of endocrine organs. Proc Natl Acad Sci U S A. 1984;81:4174–4177.

    Article  PubMed  CAS  Google Scholar 

  246. Paavola LG. The corpus luteum of the guinea pig. IV. Fine structure of macrophages during pregnancy and postpartum luteolysis, and the phagocytosis of luteal cells. Am J Anat. 1979;154:337–364.

    Article  PubMed  CAS  Google Scholar 

  247. Hehnke KE, Christenson LK, Ford SP, Taylor M. Macrophage infiltration into the porcine corpus luteum during prostaglandin F2 alpha-induced luteolysis. Biol Reprod. 1994;50:10–15.

    Article  PubMed  CAS  Google Scholar 

  248. Bukovsky A, Caudle MR, Keenan JA, Wimalasena J, Upadhyaya NB, Van Meter SE. Is corpus luteum regression an immune-mediated event? Localization of immune system components and luteinizing hormone receptor in human corpora lutea. Biol Reprod. 1995;53:1373–1384.

    Article  PubMed  CAS  Google Scholar 

  249. Tsai SJ, Juengel JL, Wiltbank MC. Hormonal regulation of monocyte chemoattractant protein-1 messenger ribonucleic acid expression in corpora lutea. Endocrinology. 1997;138:4517–4520.

    Article  PubMed  CAS  Google Scholar 

  250. Takaya R, Fukaya T, Sasano H, Suzuki T, Tamura M, Yajima A. Macrophages in normal cycling human ovaries; immunohistochemical localization and characterization. Hum Reprod. 1997;12:1508–1512.

    Article  PubMed  CAS  Google Scholar 

  251. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301–314.

    Article  PubMed  CAS  Google Scholar 

  252. Leonard EJ, Yoshimura T. Human monocyte chemoattractant protein-1 (MCP-1). Immunol Today. 1990;11:97–101.

    Article  PubMed  CAS  Google Scholar 

  253. Townson DH, Warren IS, Flory CM, Naftalin DM, Keyes PL. Expression of monocyte chemoattractant protein-1 in the corpus luteum of the rat. Biol Reprod. 1996;54:513–520.

    Article  PubMed  CAS  Google Scholar 

  254. Senturk LM, Seli E, Gutierrez LS, Mor G, Zeyneloglu HB, Arici A. Monocyte chemotactic protein-1 expression in human corpus luteum. Mol Hum Reprod. 1999;5:697–702.

    Article  PubMed  CAS  Google Scholar 

  255. Bowen JM, Towns R, Warren JS, Landis Keyes P. Luteal regression in the normally cycling rat: apoptosis, monocyte chemoattractant protein-1, and inflammatory cell involvement. Biol Reprod. 1999;60:740–746.

    Article  PubMed  CAS  Google Scholar 

  256. Springer TA. Adhesion receptors of the immune system. Nature. 1990;346:425–434.

    Article  PubMed  CAS  Google Scholar 

  257. Olson KK, Townson DH. Prolactin-induced expression of intercellular adhesion molecule-1 and the accumulation of Monocytes/Macrophages during regression of the rat corpus luteum. Biol Reprod. 2000;62:1571–1578.

    Article  PubMed  CAS  Google Scholar 

  258. Weber KS, Klickstein LB, Weber C. Specific activation of leukocyte beta2 integrins lymphocyte function-associated antigen-1 and Mac-1 by chemokines mediated by distinct pathways via the alpha subunit cytoplasmic domains. Mol Biol Cell. 1999;10:861–873.

    PubMed  CAS  Google Scholar 

  259. Yoshimura T, Yuhki N, Moore SK, Appella E, Lerman MI, Leonard EJ. Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Lett. 1989;244:487–493.

    Article  PubMed  CAS  Google Scholar 

  260. Carr MW, Roth SJ, Luther E, Rose SS, Springer TA. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A. 1994;91:3652–3656.

    Article  PubMed  CAS  Google Scholar 

  261. Nagata S. Fas ligand-induced apoptosis. Annu Rev Genet. 1999;33:29–55.

    Article  PubMed  CAS  Google Scholar 

  262. Quirk SM, Cowan RG, Joshi SG, Henrikson KP. Fas antigen-mediated apoptosis in human granulosa/luteal cells. Biol Reprod. 1995;52:279–287.

    Article  PubMed  CAS  Google Scholar 

  263. Sakamaki K, Yoshida H, Nishimura Y, Nishikawa S, Manabe N, Yonehara S. Involvement of Fas antigen in ovarian follicular atresia and luteolysis. Mol Reprod Dev. 1997;47:11–18.

    Article  PubMed  CAS  Google Scholar 

  264. Roughton SA, Lareu RR, Bittles AH, Dharmarajan AM. Fas and Fas ligand messenger ribonucleic acid and protein expression in the rat corpus luteum during apoptosismediated luteolysis. Biol Reprod. 1999;60:797–804.

    Article  PubMed  CAS  Google Scholar 

  265. Kuranaga E, Kanuka H, Bannai M, Suzuki M, Nishihara M, Takahashi M. Fas/Fas ligand system in prolactin-induced apoptosis in rat corpus luteum: possible role of luteal immune cells. Biochem Biophys Res Commun. 1999;260:167–173.

    Article  PubMed  CAS  Google Scholar 

  266. Russell DH, Matrisian L, Kibler R, Larson DF, Poulos B, Magun BE. Prolactin receptors on human lymphocytes and their modulation by cyclosporine. Biochem Biophys Res Commun. 1984;121:899–906.

    Article  PubMed  CAS  Google Scholar 

  267. Russell DH, Kibler R, Matrisian L, Larson DF, Poulos B, Magun BE. Prolactin receptors on human T and B lymphocytes: antagonism of prolactin binding by cyclosporine. J Immunol. 1985;134:3027–3031.

    PubMed  CAS  Google Scholar 

  268. Pellegrini I, Lebrun JJ, All S, Kelly PA. Expression of prolactin and its receptor in human lymphoid cells. Mol Endocrinol. 1992;6:1023–1031.

    Article  PubMed  CAS  Google Scholar 

  269. Kuranaga E, Kanuka H, Furuhata Y, Yonezawa T, Suzuki M, Nishihara M, Takahashi R. Requirement of the Fas ligand-expressing luteal immune cells for regression of corpus luteum. FEBS Lett. 2000;472:137–142.

    Article  PubMed  CAS  Google Scholar 

  270. Kuranaga E, Kanuka H, Hirabayashi K, Suzuki M, Nishihara M, Takahashi M. Progesterone is a cell death suppressor that downregulates Fas expression in rat corpus luteum. FEBS Lett. 2000;466:279–282.

    Article  PubMed  CAS  Google Scholar 

  271. Bowen JM, Keyes PL. The proestrous prolactin surge is not the sole initiator of regressive changes in corpora lutea of normally cycling rats. Biol Reprod. 1999;61:1208–1215.

    Article  PubMed  CAS  Google Scholar 

  272. Port CB, Bowen JM, Keyes PL, Townson DH. Effects of a 3 beta-hydroxysteroid dehydrogenase inhibitor on monocyte-macrophage infiltration into rat corpus luteum and on apoptosis: relationship to the luteolytic action of prolactin. Journal of Reproduction & Fertility. 2000;119:93–99.

    Article  CAS  Google Scholar 

  273. Gaytan F, Bellido C, Morales C, Sanchez-Criado JE. Both prolactin and progesterone in proestrus are necessary for the induction of apoptosis in the regressing corpus luteum of the rat. Biol Reprod. 1998;59:1200–1206.

    Article  PubMed  CAS  Google Scholar 

  274. Endo T, Aten RF, Wang F, Behrman HR. Coordinate induction and activation of metalloproteinase and ascorbate depletion in structural luteolysis. Endocrinology. 1993;133:690–698.

    Article  PubMed  CAS  Google Scholar 

  275. Hirsch B, Knoke I, Leonhardt S, Pitzel L, Jarry H, Wuttke W. Stimulation of matrixmetalloproteinase-1 and tissue inhibitor of metalloproteinase-1 gene expression in rats by the preovulatory prolactin peak. Eur J Endocrinol. 1999;140:583–589.

    Article  PubMed  CAS  Google Scholar 

  276. Musicki B, Kodaman PH, Aten RF, Behrman HR. Endocrine regulation of ascorbic acid transport and secretion in luteal cells. Biol Reprod. 1996;54:399–406.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Risk, M., Gibori, G. (2001). Mechanisms of Luteal Cell Regulation by Prolactin. In: Horseman, N.D. (eds) Prolactin. Endocrine Updates, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1683-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1683-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5676-9

  • Online ISBN: 978-1-4615-1683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics