Skip to main content

Calcium Signaling and Its Significance in Alleviating Salt Stress in Plants

  • Chapter
  • First Online:
Salt Stress in Plants

Abstract

Environmental stresses such as salinity, temperature, drought and heavy metals negatively impact the agricultural productivity. Of these, salinity stands as a major problem mainly in the developing countries. Calcium is an essential nutrient that regulates the plant growth and development and it has evolved as a ubiquitous secondary messenger in mediating complex responses towards various developmental and environmental cues. Thus, understanding the calcium signaling and consequent calcium-dependent events is essential to improve plant productivity under extreme environment. The first step in calcium signaling is the induction of [Ca2+]cyt-transient/signatures which is defined as the repetitive oscillations or spiking of [Ca2+]cyt level. This in turn activates a set of calcium binding proteins including Ca2+ sensors/decoders, protein kinases and transcription factors. The interplay between Ca2+ signatures and these proteins together contributes towards the stimulus specificity. Various efforts have been made to manipulate calcium signaling events either by exogenous calcium supplementation or by genetic modification of calcium signaling related genes in many plant species and considerable progress has been made in managing the plant responses toward salt stress. Additionally, these studies also help in understanding the effect of salt stress on the process of calcium signaling. The present review deals with the basic steps of calcium signaling process and its possible modulations that can lead to the enhanced salt tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso MT, Manjarres IM, Garcia-Sancho J (2009) Modulation of calcium signaling by intracellular organelles seen with targeted aequorins. Blackwell, Oxford, pp 37–49

    Google Scholar 

  • Anil VS, Krishnamurthy P, Kuruvilla S, Sucharitha K, Thomas G, Mathew MK (2005) Regulation of the uptake and distribution of Na+ in shoots of rice (Oryza sativa) variety Pokkali: role of Ca2+ in salt tolerance response. Physiol Plant 124:451–464

    Article  CAS  Google Scholar 

  • Anil VS, Rajkumar P, Kumar P, Mathew M (2008) A plant Ca2+ pump, ACA2, relieves salt hypersensitivity in yeast. J Biol Chem 283:3497–3506

    Article  PubMed  CAS  Google Scholar 

  • Arshi A, Ahmad A, Aref IM, Iqbal M (2010) Calcium interaction with salinity-induced effects on growth and metabolism of soybean (Glycine max L.) cultivars. J Environ Biol 31:795–801

    CAS  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, Ohsugi R (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69(1):26–36

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Ahmad R, Bhatti AS, Afzal M, Sarwar A, Maqsood MA, Kanwal S (2010) Amelioration of Salt Stress in Sugarcane (Saccharum officinarum L.) by Supplying Potassium and Silicon in Hydroponics. Pedosphere 20:153–162

    Article  PubMed  CAS  Google Scholar 

  • Barakat NAM (2011) Ameliorative effects of Ca2+ on the growth, metabolism, cationic status and cell wall degrading enzymes of induced salinity stress Vicia faba L. J Stress Physiol Biochem 7:369–386

    Article  PubMed  CAS  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–628

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Poole RJ (1986) Kinetics of Ca2+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris L. Plant Physiol 80:727–731

    Article  PubMed  CAS  Google Scholar 

  • Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S (2011) Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci 2:85

    Article  PubMed  Google Scholar 

  • Cabot C, Sibole JV, Barcelo J, Poschenrieder C (2009) Sodium-calcium interactions with growth, water, and photosynthetic parameters in salt-treated beans. J Plant Nutr Soil Sci 172:637–643

    Article  CAS  Google Scholar 

  • Case RM, Eisner D, Gurney A, Jones O, Muallem S, Verkhratsky A (2007) Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signaling system. Cell Calcium 42:345–350

    Article  PubMed  CAS  Google Scholar 

  • Catala R, Santos E, Alonso JM, Ecker JR, Martínez-Zapater JM, Salinas J (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15:2940–2951

    Article  PubMed  CAS  Google Scholar 

  • Cha-um S, Pokasombat Y, Kirdmanee C (2011) Remediation of salt-affected soil by gypsum and farmyard manure importance for the production of Jasmine rice. Aust J Crop Sci 5:458–465

    Google Scholar 

  • Chen HX, Li PM, Gao HY (2007) Alleviation of photoinhibition by calcium supplement in salt-treated Rumex leaves. Physiol Plant 129:386–396

    Article  CAS  Google Scholar 

  • Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Pandey GK, Grant JJ, Batistič O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52:223–239

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Sung SJ, Kim BG, Pandey GK, Cho JS, Kim KN, Luan S (2010) Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol Cells 29:159–165

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development. New Phytol 175:387–404

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Jakobsen MK, Baker AJ, Telzerow A, Hou SW, Laplaze L, Barrot L, Scott Poethig R, Haseloff J, Webb AAR (2006) Time of day modulates low-temperature Ca2+ signals in Arabidopsis. Plant J 48:962–973

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  PubMed  CAS  Google Scholar 

  • FAO (2008) FAO land and plant nutrition management service. http://www.fao.org/ag/agl/agll/spush

  • Franz S, Ehlert B, Liese A, Kurth J, Cazale AC, Romeis T (2011) Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana. Mol Plant 4:83–96

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, Trewavas AJ (2001) Signal processing and transduction in plant cells: the end of the beginning? Nat Rev Mol Cell Biol 2:307–314

    Article  PubMed  CAS  Google Scholar 

  • Gobinathan P, Murali PV, Panneerselvam R (2009) Intearactive effects of calcium chloride on salinity induced proline metabolism in Pennisetum typoides. Adv Biol Res 3:168–173

    CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs – a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159

    Article  PubMed  CAS  Google Scholar 

  • Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, Corratge-Faillie C, Offenborn JN (2011) Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res 21(7):1116–1130

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  • Huertas R, Olías R, Eljakaoui Z, Galvez FJ, Li J, Morales PAD, Belver A, Rodriguez-Rosales MP (2012) Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ 35(8):1467–1482

    Article  PubMed  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Gomathinayagam M, Panneerselvam R (2008) Effects of calcium chloride on metabolism of salt-stressed Dioscorea rotundata. Acta Biol Crac Series Bot 50:63–67

    Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748

    Article  PubMed  CAS  Google Scholar 

  • Kasai M, Muto S (1990) Ca2+ pump and Ca2+/H+ antiporter in plasma membrane vesicles isolated by aqueous two-phase partitioning from corn leaves. J Mem Biol 114:133–142

    Article  CAS  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Masroor M, Khan A (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defense system and osmoprotectant accumulation. Acta Physiol Plant 32:121–132

    Article  Google Scholar 

  • Kim J, Kim HY (2006) Functional analysis of a calcium binding transcription factor involved in plant salt stress signaling. FEBS Lett 580:5251–5256

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Park BO, Yoo JH, Jung MY, Lee SM, Han HJ, Kim KE, Kim SH, Lim CO, Yun DJ, Lee SY, Chung WS (2007) Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis. J Biol Chem 282:36292–36302

    Article  PubMed  CAS  Google Scholar 

  • Kim MC, Chung WS, Yun DJ, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2:13–21

    Article  PubMed  CAS  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  PubMed  CAS  Google Scholar 

  • Kushwaha R, Singh A, Chattopadhyay S (2008) Calmodulin7 plays an important role as transcriptional regulator in Arabidopsis seedling development. Plant Cell 20:1747–1759

    Article  PubMed  CAS  Google Scholar 

  • Li M, Hong Y, Wang X (2009) Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim Biophys Acta 1791:927–935

    Article  PubMed  CAS  Google Scholar 

  • Ma SY, Wu WH (2007) AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol 65:511–518

    Article  PubMed  CAS  Google Scholar 

  • Maeda Y, Nakazawa R (2008) Effects of the timing of calcium application on the alleviation of salt stress in the maize, tall fescue and reed canarygrass seedlings. Biol Plantarum 52:153–156

    Article  CAS  Google Scholar 

  • Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56:575–589

    Article  PubMed  CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Sankar B, Somasundaram R, Murali PV, Sridharan R, Panneerselvam R (2007) Salt stress mitigation by calcium chloride in Vigna radiata (l.) Wilczek. Acta Biol Crac Series Bot 49:105–109

    Google Scholar 

  • Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63(8):2933–2946

    Article  PubMed  CAS  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    Article  PubMed  CAS  Google Scholar 

  • McCombs JE, Palmer AE (2008) Measuring calcium dynamics in living cells with genetically encodable calcium indicators. Methods 46:152–159

    Article  PubMed  CAS  Google Scholar 

  • Mei H, Zhao J, Pittman JK, Lachmansingh J, Park S, Hirschi KD (2007) In planta regulation of the Arabidopsis Ca2+/H+ antiporter CAX1. J Exp Bot 58:3419–3427

    Article  PubMed  CAS  Google Scholar 

  • Milla MAR, Uno Y, Chang IF, Townsend J, Maher EA, Quilici D, Cushman JC (2006) A novel yeast two-hybrid approach to identify CDPK substrates: characterization of the interaction between CPK11 and AtDi19, a nuclear zinc finger protein. FEBS Lett 580:904–911

    Article  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Vermeer JM (2009) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33:655–669

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Murillo-Amador B, Jones HG, Kaya C, Aguilar RL, Gárcia-Hernández JL, Troyo-Diéguez E, Ávila-Serrano NY, Rueda-Puente E (2006) Effects of foliar application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Env Exp Bot 58:188–196

    Article  CAS  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Ameliorative effect of CaCl2 on growth, membrane permeability and nutrient uptake in Atriplex halimus subsp. schweinfurthii grown at high (NaCl) salinity. Desalination 249:163–166

    Article  CAS  Google Scholar 

  • Nengfei D, Qinglin F, Chen L, Yichen L, Bin G, Huifeng S (2010) Effect of exogenous calcium chloride on antioxidant enzyme activities and ions uptake of broccoli under salt stress. Chin Agri Sci Bull 26:133–137

    Google Scholar 

  • Omami EN (2005) Response of Amaranth to salinity stress. Ph.D. thesis. Faculty of Natural and Agricultural Sciences. University of Pretoria

    Article  PubMed  CAS  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P (2003) Comprehensive Analysis of NAC Family Genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  PubMed  CAS  Google Scholar 

  • Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux M, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    Article  PubMed  CAS  Google Scholar 

  • Pottosin II, Schonknecht G (2007) Vacuolar calcium channels. J Exp Bot 58:1559–1569

    Article  PubMed  CAS  Google Scholar 

  • Probes M (2010) The handbook. Invitrogen, Carlsbad

    Google Scholar 

  • Qiu QS, Barkla BJ, Vera-Estrella R, Zhu JK, Schumaker KS (2003) Na+/H+ exchange activity in the plasma membrane of Arabidopsis. Plant Physiol 132:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Qudeimat E, Faltusz AMC, Wheeler G, Lang D, Brownlee C, Reski R, Frank W (2008) A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens. Proc Natl Acad Sci USA 105:19555–19560

    Article  PubMed  CAS  Google Scholar 

  • Rao XL, Zhang XH, Li RJ, Shi HT, Lu YT (2011) A calcium sensor-interacting protein kinase negatively regulates salt stress tolerance in rice (Oryza sativa). Funct Plant Biol 38:441–450

    CAS  Google Scholar 

  • Romani G, Bonza MC, Filippini I, Cerana M, Beffagna N, De Michelis MI (2004) Involvement of the plasma membrane Ca2+-ATPase in the short-term response of Arabidopsis thaliana cultured cells to oligogalacturonides. Plant Biol 6:192–200

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Sarwat M, Ahmad P, Nabi G, Hu X (2012) Ca(2+) signals: the versatile decoders of environmental cues. Crit Rev Biotechnol 2012 May 9. [Epub ahead of print]

    Google Scholar 

  • Schumaker KS, Sze H (1985) A Ca2+/H+ antiport system driven by the proton electrochemical gradient of a tonoplast H+-ATPase from oat roots. Plant Physiol 79:1111–1117

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Shabala L, Volkenburgh EV (2003) Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct Plant Biol 30:507–514

    Article  CAS  Google Scholar 

  • Shaikh F, Gul B, Li WQ, Jing LX, Khan MA (2007) Effect of calcium and light on the germination of Urochondra setulosa under different salts. J Zheiziang University Sci B 8:20–26

    Article  CAS  Google Scholar 

  • Shen P, Wang R, Jing W, Zhang W (2011) Rice Phospholipase Dα is involved in salt tolerance by the mediation of H+-ATPase activity and transcription. J Int Plant Biol 53:289–299

    Article  CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  PubMed  CAS  Google Scholar 

  • Shigaki T, Hirschi KD (2006) Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants. Plant Biol 8:419–429

    Article  PubMed  CAS  Google Scholar 

  • Swanson SJ, Choi WG, Chanoca A, Gilroy S (2011) In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. Annu Rev Plant Biol 62:273–297

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Swanson SJ, Gilroy S, Stacey G (2010) Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis. Plant Physiol 154:705–719

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Davenport RJ (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot (Lon) 91:503–527

    Article  CAS  Google Scholar 

  • Tracy FE, Gilliham M, Dodd AN, Webb AAR, Tester M (2008) NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ 31:1063–1073

    Article  PubMed  CAS  Google Scholar 

  • Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plant. Plant J 58:778–790

    Article  PubMed  CAS  Google Scholar 

  • Tsou PL, Lee SY, Allen NS, Winter-Sederoff H, Robertson D (2012) An ER-targeted calcium-binding peptide confers salt and drought tolerance mediated by CIPK6 in Arabidopsis. Planta 235:539–552

    Article  PubMed  CAS  Google Scholar 

  • Very AA, Davies JM (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc Natl Acad Sci USA 97:9801–9806

    Article  PubMed  CAS  Google Scholar 

  • Webb AAR, McAinsh MR, Taylor JE, Hetherington AM (1996) Calcium ions as intracellular second messengers in higher plants. Advances Bot Res 22:45–96

    Article  CAS  Google Scholar 

  • Xue YF, Liu L, Liu ZP, Mehta SK, Zhao GM (2008) Protective role of Ca2+ against NaCl toxicity in Jerusalem artichoke by up-regulation of antioxidant enzymes. Pedosphere 18:766–774

    Article  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 12:1360–1385

    Google Scholar 

  • Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E (2005) Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci USA 102:16107–16112

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z (2009) Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    Article  PubMed  CAS  Google Scholar 

  • Yang FJ, Li TL, Zang ZJ, Lu SW (2010) Effects of timing of exogenous calcium application on the alleviation of salt stress in the tomato seedlings. Sci Agri Sin 43:1181–1188

    CAS  Google Scholar 

  • Yoo JH, Park CY, Kim JC, Heo WD, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH, Lee JH, Kim HS, Lee SM, Yoon HW, Lim CO, Yun DJ, Lee SY, Chung WS, Cho MJ (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697–3706

    Article  PubMed  CAS  Google Scholar 

  • Yue Y, Zhang M, Zhang J, Duan L, Li Z (2012) SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. J Plant Physiol 169:255–261

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Shigaki T, Mei H, Guo Y, Cheng NH, Hirschi KD (2009) Interaction between Arabidopsis Ca2+/H+ exchangers CAX1 and CAX3. J Biol Chem 284:4605–4615

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

  • Zhu XJ, Yang JS, Liang YC, Lou YS, Yang XY (2004) Effect of exogenous calcium on photosynthesis and its related physiological characteristics of rice seedlings under salt stress. Sci Agri Sin 37:1497–1503

    CAS  Google Scholar 

  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Suprasanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Srivastava, A.K., Rai, A.N., Patade, V.Y., Suprasanna, P. (2013). Calcium Signaling and Its Significance in Alleviating Salt Stress in Plants. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V. (eds) Salt Stress in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6108-1_9

Download citation

Publish with us

Policies and ethics