Skip to main content

Involvement of Compartmentalization in Monoterpene and Sesquiterpene Biosynthesis in Plants

  • Chapter
  • First Online:
Isoprenoid Synthesis in Plants and Microorganisms

Abstract

Terpenoids play numerous vital roles in basic plant processes with volatile monoterpenes and sesquiterpenes contributing to plant defense and reproduction. The biosynthesis of terpenoids in plants occurs in different subcellular compartments, which until recently were believed to include the cytosol, plastids, and mitochondria. The plastidic MEP pathway and the cytosolic MVA pathway give rise to IPP and DMAPP, which are subsequently utilized by prenyltransferases to produce prenyl diphosphates. It has been accepted that GPP and monoterpenes are synthesized in plastids, whereas FPP and sesquiterpenes are produced in the cytosol. Here we discuss how compartmentalization contributes to the formation of terpenoid diversity in plants in light of recent reports on new subcellular localizations for some enzymatic steps as well as on bifunctional terpene synthases capable of producing both mono- and sesquiterpenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adiwilaga K, Kush A (1996) Cloning and characterization of cDNA encoding farnesyl diphosphate synthase from rubber tree (Hevea brasiliensis). Plant Mol Biol 30:935–946

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Giri AP, Deuerlein S et al (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Giri P, Verstappen FWA et al (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16:3110–3131

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Jongsma MA, Kim TY et al (2006) Metabolic engineering of terpenoid biosynthesis in plants. Phytochem Rev 5:49–58

    Article  CAS  Google Scholar 

  • Ahumada I, Cairo A, Hemmerlin A et al (2008) Characterisation of the gene family encoding acetoacetyl-CoA thiolase in Arabidopsis. Funct Plant Biol 35:1100–1111

    Article  CAS  Google Scholar 

  • Attucci S, Aitken SM, Gulick PJ et al (1995) Farnesyl pyrophosphate synthase from white lupin: molecular cloning, expression, and purification of the expressed protein. Arch Biochem Biophys 321:493–500

    Article  PubMed  CAS  Google Scholar 

  • Bach TJ (1986) Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis? Lipids 21:82–88

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann J, Crock J, Jetter R et al (1998a) Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-α-bisabolene synthase from grand fir (Abies grandis). Proc Natl Acad Sci USA 95:6756–6761

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998b) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann J, Martin D, Oldham NJ et al (2000) Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-β-ocimene synthase. Arch Biochem Biophys 375:261–269

    Article  PubMed  CAS  Google Scholar 

  • Bouvier F, Suire C, d’Harlingue A et al (2000) Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J 24:241–252

    Article  PubMed  CAS  Google Scholar 

  • Burke CC, Croteau R (2002a) Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys 405:130–136

    Article  PubMed  CAS  Google Scholar 

  • Burke CC, Croteau R (2002b) Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J Biol Chem 277:3141–3149

    Article  PubMed  CAS  Google Scholar 

  • Burke CC, Wildung MR, Croteau R (1999) Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc Natl Acad Sci USA 96:13062–13067

    Article  PubMed  CAS  Google Scholar 

  • Campbell M, Hahn FM, Poulter CD et al (1997) Analysis of the isopentenyl diphosphate isomerase gene family from Arabidopsis thaliana. Plant Mol Biol 36:323–328

    Article  Google Scholar 

  • Campos N, Boronat A (1995) Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Cell 7:2163–2174

    PubMed  CAS  Google Scholar 

  • Cane DE (1999) Sesquiterpene biosynthesis: cyclization mechanisms. In: Cane DD (ed) Comprehensive natural products chemistry, vol 2. Elsevier, Amsterdam

    Google Scholar 

  • Carretero-Paulet L, Ahumada I, Cunillera N et al (2002) Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-d-erythritol 4-phosphate pathway. Plant Physiol 129:1581–1591

    Article  PubMed  CAS  Google Scholar 

  • Carrie C, Murcha MW, Millar AH et al (2007) Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in Arabidopsis thaliana are targeted either to peroxisomes or cytosol but not to mitochondria. Plant Mol Biol 63:97–108

    Article  PubMed  CAS  Google Scholar 

  • Chappell J (1995) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107:1–6

    PubMed  CAS  Google Scholar 

  • Chappell J, Wolf F, Proulx J et al (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol 109:1337–1343

    PubMed  CAS  Google Scholar 

  • Chen F, Tholl D, Bohlmann J et al (2011) The family of the terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    Article  PubMed  CAS  Google Scholar 

  • Cunillera N, Arró M, Delourme D et al (1996) Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes. J Biol Chem 271:7774–7780

    Article  PubMed  CAS  Google Scholar 

  • Cunillera N, Boronat A, Ferrer A (1997) The Arabidopsis thaliana FPS1 gene generates a novel mRNA that encodes a mitochondrial farnesyl-diphosphate synthase isoform. J Biol Chem 272:15381–15388

    Article  PubMed  CAS  Google Scholar 

  • Cunillera N, Boronat A, Ferrer A (2000) Spatial and temporal patterns of GUS expression directed by 5′ regions of the Arabidopsis thaliana farnesyl diphosphate synthase genes FPS1 and FPS2. Plant Mol Biol 44:747–758

    Article  PubMed  CAS  Google Scholar 

  • Davidovich-Rikanati R, Lewinsohn E, Bar E et al (2008) Overexpression of the lemon basil α-zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit. Plant J 56:228–238

    Article  PubMed  CAS  Google Scholar 

  • Delourme D, Lacroute F, Karst F (1994) Cloning of an Arabidopsis thaliana cDNA coding for farnesyl diphosphate synthase by functional complementation in yeast. Plant Mol Biol 26:1867–1873

    Article  PubMed  CAS  Google Scholar 

  • Denbow CJ, LÃ¥ng S, Cramer CL (1996) The N-terminal domain of tomato 3-hydroxy-3-methylglutaryl-CoA reductases: sequence, microsomal targeting and glycosylation. J Biol Chem 271:9710–9715

    Article  PubMed  CAS  Google Scholar 

  • Disch A, Hemmerlin A, Bach TJ, Rohmer M (1998) Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells. Biochem J 331:615–621

    PubMed  CAS  Google Scholar 

  • Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotechnol 19:181–189

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Andersson S, Orlova I et al (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA et al (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Eisenreich W, Schwarz M, Cartayrade A et al (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5:R221–R233

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich W, Bacher A, Arigoni D et al (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon J, Kreis W (1999) Biochemistry of terpenoids: monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins. In: Wink M (ed) Biochemistry of plant secondary metabolism. Ann Plant Rev 3:222–299, CRC Press, Boca Raton

    Google Scholar 

  • Gomez SK, Cox MM, Bede JC et al (2005) Lepidopteran herbivory and oral factors induce transcripts encoding novel terpene synthases in Medicago truncatula. Arch Insect Biochem Physiol 58:114–127

    Article  PubMed  CAS  Google Scholar 

  • Green S, Friel EN, Matich A et al (2007) Unusual features of a recombinant apple α-farnesene synthase. Phytochemistry 68:176–188

    Article  PubMed  CAS  Google Scholar 

  • Hartmann M-A, Bach TJ (2001) Incorporation of all-trans-farnesol into sterols and ubiquinone in Nicotiana tabacum L. cv bright yellow cell cultures. Tetrahedron Lett 42:655–657

    Article  CAS  Google Scholar 

  • Hemmerlin A, Hoeffer JF, Meyer O et al (2003a) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Rivera SB, Erickson HK et al (2003b) Enzymes encoded by the farnesyl diphosphate synthase gene family in the big sagebrush Artemisia tridentata ssp. Spiciformis. J Biol Chem 278:32132–32140

    Article  PubMed  CAS  Google Scholar 

  • Hoeffler JF, Hemmerlin A, Grosdemange-Billiard C et al (2002) Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate. Biochem J 366:573–583

    Article  PubMed  CAS  Google Scholar 

  • Hohn TM, Ohlrogge JB (1991) Expression of a fungal sesquiterpene cyclase gene in transgenic tobacco. Plant Physiol 97:460–462

    Article  PubMed  CAS  Google Scholar 

  • Hsiao YY, Jeng MF, Tsai WC et al (2008) A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif. Plant J 55:719–733

    Article  PubMed  CAS  Google Scholar 

  • Hsieh MH, Goodman HM (2005) The Arabidopsis IspH homolog is involved in the plastid nonmevalonate pathway of isoprenoid biosynthesis. Plant Physiol 138:641–653

    Article  PubMed  CAS  Google Scholar 

  • Hsieh MH, Chang CY, Hsu SJ et al (2008) Chloroplast localization of methylerythritol 4-phosphte pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis. Plant Mol Biol 66:663–673

    Article  PubMed  CAS  Google Scholar 

  • Hsieh F-L, Chang T-H, Ko T-P et al (2011) Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. Plant Physiol 155:1079–1090

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Nikolau BJ (2007) Genetic, biochemical and physiological studies of acetyl-CoA metabolism via condensation. In: Benning C, Ohlrogge J (eds) Current advances in the biochemistry and cell biology of plant lipids. Aardvark Global Publishing, Salt Lake City

    Google Scholar 

  • Kappers I, Aharoni A, van Herpen TWJM et al (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072

    Article  PubMed  CAS  Google Scholar 

  • Köpke D, Schröder R, Fischer HM et al (2008) Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine? Planta 228:427–438

    Article  PubMed  CAS  Google Scholar 

  • Kovacs WJ, Olivier LM, Krisans SK (2002) Central role of peroxisomes in isoprenoid biosynthesis. Prog Lipid Res 41:369–391

    Article  PubMed  CAS  Google Scholar 

  • Kovacs WJ, Tape KN, Shackelford JE et al (2007) Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes. Histochem Cell Biol 127:273–290

    Article  PubMed  CAS  Google Scholar 

  • Koyama T, Ogura K (1999) Isopentenyl diphosphate isomerase and prenyltransferases. In: Barton D, Nakanishi K (eds) Comprehensive natural products chemistry, vol 2. Elsevier, Oxford

    Google Scholar 

  • Laule O, Fürholz A, Chang HS et al (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Chappell J (2008) Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. Plant Physiol 147:1017–1033

    Article  PubMed  CAS  Google Scholar 

  • Leivar P, González VM, Castel S et al (2005) Subcellular localization of Arabidopsis 3-hydroxy-3-­methylglutaryl-coenzyme A reductase. Plant Physiol 137:57–69

    Article  PubMed  CAS  Google Scholar 

  • Li CP, Larkins BA (1996) Identification of a maize endosperm-specific cDNA encoding farnesyl pyrophosphate synthetase. Gene 171:193–196

    Article  PubMed  CAS  Google Scholar 

  • Li SM, Hennig S, Heide L (1998) Shikonin: a geranyl diphosphate-derived plant hemiterpenoid formed via the mevalonate pathway. Tetrahedron Lett 39:2721–2724

    Article  CAS  Google Scholar 

  • Liang PH, Ko TP, Wang AHJ (2002) Structure, mechanism and function of prenyltransferases. Eur J Biochem 269:3339–3354

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  PubMed  CAS  Google Scholar 

  • Matsushita Y, Kang WY, Charlwood BV (1996) Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua. Gene 172:207–209

    Article  PubMed  CAS  Google Scholar 

  • McCaskill D, Croteau R (1995) Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha x piperita) rely exclusively on plastid-derived isopentenyl diphosphate. Planta 197:49–56

    Article  CAS  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    PubMed  CAS  Google Scholar 

  • Merret R, Cirioni J, Bach TJ, Hemmerlin A (2007) A serine involved in actin-dependent subcellular localization of a stress-induced tobacco BY-2 hydroxymethylglutaryl-CoA reductase isoform. FEBS Lett 581:5295–5299

    Article  PubMed  CAS  Google Scholar 

  • Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973

    Article  PubMed  CAS  Google Scholar 

  • Nagegowda DA, Dudareva N (2007) Plant biochemistry and biotechnology of flavor compounds and essential oils. In: Kayser O, Quax W (eds) Medicinal plant biotechnology. From basic research to industrial applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Nagegowda DA, Ramalingam S, Hemmerlin A et al (2005) Brassica juncea HMG-CoA synthase: localization of mRNA and protein. Planta 221:844–856

    Article  PubMed  CAS  Google Scholar 

  • Nagegowda DA, Gutensohn M, Wilkerson CG et al (2008) Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J 55:224–239

    Article  PubMed  CAS  Google Scholar 

  • Newman JD, Chappell J (1999) Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol 34:95–106

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuizen NJ, Wang MY, Matich AJ et al (2009) Two terpene synthases are responsible for the major terpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). J Exp Bot 60:3203–3219

    Article  PubMed  CAS  Google Scholar 

  • Ogura K, Koyama T (1998) Enzymatic aspects of isoprenoid chain elongation. Chem Rev 98:1263–1276

    Article  PubMed  CAS  Google Scholar 

  • Ohara K, Ujihara T, Endo T et al (2003) Limonene production in tobacco with Perilla limonene synthase cDNA. J Exp Bot 54:2635–2642

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Kasahara H, Yamaguchi S et al (2008) Genetic evidence for the role of isopentenyl diphosphate isomerases in the mevalonate pathway and plant development in Arabidopsis. Plant Cell Physiol 49:604–616

    Article  PubMed  CAS  Google Scholar 

  • Orlova I, Nagegowda DA, Kish CM et al (2009) The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. Plant Cell 21:4002–4017

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Herickhoff L, Backhaus RA (1996) Cloning, characterization, and heterologous expression of cDNAs for farnesyl diphosphate synthase from the guayule rubber plant reveals that this prenyltransferase occurs in rubber particles. Arch Biochem Biophys 332:196–204

    Article  PubMed  CAS  Google Scholar 

  • Pechous SW, Whitaker BD (2004) Cloning and functional expression of an (E, E)-α-farnesene synthase cDNA from peel tissue of apple fruit. Planta 219:84–94

    Article  PubMed  CAS  Google Scholar 

  • Phillips MA, D’Auria JC, Gershenzon J et al (2008a) The Arabidopsis thaliana type I isopentenyl diphosphate isomerases are targeted to multiple subcellular compartments and have overlapping functions in isoprenoid biosynthesis. Plant Cell 20:677–696

    Article  PubMed  CAS  Google Scholar 

  • Phillips MA, León P, Boronat A et al (2008b) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 13:619–623

    Article  PubMed  CAS  Google Scholar 

  • Poulter CD, Rilling HC (1981) Prenyl transferases and isomerase. In: Porter JW, Spurgeon SL (eds) Biosynthesis of isoprenoid compounds, vol 1. Wiley, New York

    Google Scholar 

  • Querol J, Campos N, Imperial S et al (2002) Functional analysis of the Arabidopsis thaliana GCPE protein involved in plastid isoprenoid biosynthesis. FEBS Lett 514:343–346

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Babujee L, Ma C et al (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Quan S, Aung K et al (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Rohdich F, Zepeck F, Adam P et al (2003) The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proc Natl Acad Sci USA 100:1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    Article  PubMed  CAS  Google Scholar 

  • Sallaud C, Rontein D, Onillon S et al (2009) A novel pathway for sesquiterpene biosynthesis from Z, Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 21:301–317

    Article  PubMed  CAS  Google Scholar 

  • Sanmiya K, Ueno O, Matsuoka M et al (1999) Localization of farnesyl diphosphate synthase in chloroplasts. Plant Cell Physiol 40:348–354

    Article  PubMed  CAS  Google Scholar 

  • Sapir-Mir M, Mett A, Belausov E et al (2008) Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiol 148:1219–1228

    Article  PubMed  CAS  Google Scholar 

  • Schilmiller AL, Schauvinhold I, Larson M et al (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci USA 106:10865–10870

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Gershenzon J (2008) Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies). Phytochemistry 69:49–57

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Wächtler B, Temp U et al (2010) A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol 152:639–655

    Article  PubMed  CAS  Google Scholar 

  • Schnee C, Köllner TG, Gershenzon J et al (2002) The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene, (E)-nerolidol, and (E, E)-farnesol after herbivore damage. Plant Physiol 130:2049–2060

    Article  PubMed  CAS  Google Scholar 

  • Schnee C, Köllner TG, Held M et al (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Schuhr CA, Radykewicz T, Sagner S et al (2003) Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem Rev 2:3–16

    Article  CAS  Google Scholar 

  • Simkin AJ, Guirimand G, Papon N et al (2011) Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 234:903–914

    Google Scholar 

  • Soler E, Feron G, Clastre M et al (1992) Evidence for a geranyl diphosphate synthase located within the plastids of Vitis vinifera L. cultivated in vitro. Planta 187:171–175

    Article  CAS  Google Scholar 

  • Sommer S, Severin K, Camara B et al (1995) Intracellular localization of geranylpyrophosphate synthase from cell cultures of Lithospermum erythrorhizon. Phytochemistry 38:623–627

    Article  CAS  Google Scholar 

  • Suire C, Bouvier F, Backhaus RA et al (2000) Cellular localization of isoprenoid biosynthetic enzymes in Marchantia polymorpha. Uncovering a new role of oil bodies. Plant Physiol 124:971–978

    Article  PubMed  CAS  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304

    Article  PubMed  CAS  Google Scholar 

  • Tholl D, Kish CM, Orlova I et al (2004) Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell 16:977–992

    Article  PubMed  CAS  Google Scholar 

  • Tholl D, Chen F, Petri J et al (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771

    Article  PubMed  CAS  Google Scholar 

  • Tissier A, Sallaud C, Rontein D (2013) Tobacco trichomes as a platform for terpenoid biosynthesis engineering. In: Bach TJ, Rohmer M (eds) Isoprenoid synthesis in plants and microorganisms: New concepts and experimental approaches. Springer, New York

    Google Scholar 

  • Trapp SC, Croteau RB (2001) Genomic organisation of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832

    PubMed  CAS  Google Scholar 

  • Tritsch D, Hemmerlin A, Bach TJ, Rohmer M (2010) Plant isoprenoid biosynthesis via the MEP pathway: in vivo IPP/DMAPP ratio produced by (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase in tobacco BY-2 cell cultures. FEBS Lett 584:129–134

    Article  PubMed  CAS  Google Scholar 

  • Turner G, Gershenzon J, Nielson EE et al (1999) Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. Plant Physiol 120:879–886

    Article  PubMed  CAS  Google Scholar 

  • van Schie CCN, Ament K, Schmidt A et al (2007a) Geranyl diphosphate synthase is required for biosynthesis of gibberellins. Plant J 52:752–762

    Article  PubMed  CAS  Google Scholar 

  • van Schie CCN, Haring MA, Schuurink RC (2007b) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 64:251–263

    Article  PubMed  CAS  Google Scholar 

  • Vollack K-U, Bach TJ (1996) Cloning of a cDNA encoding cytosolic acetoacetyl-coenzyme A thiolase from radish by functional expression in Saccharomyces cerevisiae. Plant Physiol 111:1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Vollack K-U, Dittrich B, Ferrer A et al (1994) Two radish genes for 3-hydroxy-3-methylglutaryl-CoA reductase isozymes complement mevalonate auxotrophy in a yeast mutant and yield membrane-bound active enzyme. J Plant Physiol 143:479–487

    Article  CAS  Google Scholar 

  • Wallaart TE, Bouwmeester HJ, Hille J et al (2001) Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212:460–465

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Dixon RA (2009) Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc Natl Acad Sci USA 106:9914–9919

    Article  PubMed  CAS  Google Scholar 

  • Williams DC, McGarvey DJ, Katahira EJ et al (1998) Truncation of limonene synthase preprotein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37:12213–12220

    Article  PubMed  CAS  Google Scholar 

  • Wise ML, Croteau R (1999) Monoterpene biosynthesis. In: Cane DD (ed) Comprehensive natural products chemistry, vol 2. Elsevier, Amsterdam

    Google Scholar 

  • Wu S, Schalk M, Clark A et al (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotech 24:1441–1447

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Dudareva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gutensohn, M., Nagegowda, D.A., Dudareva, N. (2012). Involvement of Compartmentalization in Monoterpene and Sesquiterpene Biosynthesis in Plants. In: Bach, T., Rohmer, M. (eds) Isoprenoid Synthesis in Plants and Microorganisms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4063-5_11

Download citation

Publish with us

Policies and ethics