Skip to main content

Consolidated Bioprocessing

  • Chapter
  • First Online:
Advanced Biofuels and Bioproducts

Abstract

The production of ethanol and other biofuels through the biochemical conversion of lignocellulosic biomass represents a promising path towards sustainably achieving the immense global demand for liquid transportation fuels. While numerous cellulosic ethanol production process configurations exist, the one known as Consolidated Bioprocessing (CBP) stands alone in combining all biologically mediated events into the action of a single organism (i.e., production and secretion of saccharolytic enzymes, hydrolysis of cellulose and hemicellulose, and fermentation of six-carbon and five-carbon sugars into biofuels such as ethanol). We discuss here the major issues with developing CBP technologies including the promises and challenges, the two prominently pursued routes to achieve this technology and several of the most promising candidate organisms. CBP represents a low-risk, high-reward proposition and its pursuit by researchers is most certainly warranted as we look to the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15(5):777–793

    Article  CAS  Google Scholar 

  2. Himmel ME (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production (vol 315, pg 804, 2007). Science 316(5827):982

    CAS  Google Scholar 

  3. Hill J, Nelson E, Tilman D et al (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103(30):11206–11210

    Article  CAS  Google Scholar 

  4. Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465

    Article  Google Scholar 

  5. Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  Google Scholar 

  6. Den Haan R, Rose SH, Lynd LR et al (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9(1):87–94

    Article  Google Scholar 

  7. Lynd LR, van Zyl WH, McBride JE et al (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583

    Article  CAS  Google Scholar 

  8. Hong J, Wang Y, Kumagai H et al (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130(2):114–123

    Article  CAS  Google Scholar 

  9. van Zyl WH, Lynd LR, den Haan R et al (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235

    Google Scholar 

  10. Carere CR, Sparling R, Cicek N et al (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9(7):1342–1360

    Article  CAS  Google Scholar 

  11. Lu YP, Zhang YHP, Lynd LR (2006) Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci USA 103(44):16165–16169

    Article  CAS  Google Scholar 

  12. Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20(3):364–371

    Article  CAS  Google Scholar 

  13. Himmel ME, Ding SY, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  CAS  Google Scholar 

  14. Foust TS, Ibsen KN, Dayton DC, Hess JR, Kenney KE (2008) The biorefinery, in biomass recalcitrance. In: Himmel ME (ed) Deconstructing the plant cell wall for bioenergy. Blackwell Publishing, London

    Google Scholar 

  15. McBee RH (1954) The characteristics of Clostridium thermocellum. J Bacteriol 67(4):505–506

    CAS  Google Scholar 

  16. Freier D, Mothershed CP, Wiegel J (1988) Characterization of Clostridium-thermocellum Jw20. Appl Environ Microbiol 54(1):204–211

    CAS  Google Scholar 

  17. Sai RM, Seenayya G (1989) Ethanol-production by Clostridium-thermocellum Ss8, a newly isolated thermophilic bacterium. Biotechnol Lett 11(8):589–592

    Article  Google Scholar 

  18. Ram MS, Seenayya G (1991) Production of ethanol from straw and bamboo pulp by primary isolates of Clostridium thermocellum. World J Microbiol Biotechnol 7(3):372–378

    Article  CAS  Google Scholar 

  19. Ram MS, Rao CV, Seenayya G (1991) Characteristics of Clostridium thermocellum strain Ss8—a broad saccharolytic thermophile. World J Microbiol Biotechnol 7(2):272–275

    Article  Google Scholar 

  20. Herrero AA, Gomez RF, Snedecor B et al (1985) Growth-inhibition of Clostridium thermocellum by carboxylic-acids—a mechanism based on uncoupling by weak acids. Appl Microbiol Biotechnol 22(1):53–62

    Article  CAS  Google Scholar 

  21. Tailliez P, Girard H, Longin R et al (1989) Cellulose fermentation by an asporogenous mutant and an ethanol-tolerant mutant of Clostridium thermocellum. Appl Environ Microbiol 55(1):203–206

    CAS  Google Scholar 

  22. Tailliez P, Girard H, Millet J et al (1989) Enhanced cellulose fermentation by an asporogenous and ethanol-tolerant mutant of Clostridium thermocellum. Appl Environ Microbiol 55(1):207–211

    CAS  Google Scholar 

  23. Rani KS, Seenayya G (1999) High ethanol tolerance of new isolates of Clostridium thermocellum strains SS21 and SS22. World J Microbiol Biotechnol 15(2):173–178

    Article  Google Scholar 

  24. Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16(4):743–762

    Article  CAS  Google Scholar 

  25. Tyurin MV, Desai SG, Lynd LR (2004) Electrotransformation of Clostridium thermocellum. Appl Environ Microbiol 70(2):883–890

    Article  CAS  Google Scholar 

  26. Tripathi SA, Olson DG, Argyros DA et al (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76(19):6591–6599

    Article  CAS  Google Scholar 

  27. Zverlov VV, Klupp M, Krauss J et al (2008) Mutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline cellulose. J Bacteriol 190(12):4321–4327

    Article  CAS  Google Scholar 

  28. Mai V, Lorenz WW, Wiegel J (1997) Transformation of Thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiol Lett 148(2):163–167

    Article  CAS  Google Scholar 

  29. Tyurin MV, Sullivan CR, Lynd LR (2005) Role of spontaneous current oscillations during high-efficiency electrotransformation of thermophilic anaerobes. Appl Environ Microbiol 71(12):8069–8076

    Article  CAS  Google Scholar 

  30. Shaw AJ, Jenney FE, Adams MWW et al (2008) End-product pathways in the xylose fermenting bacterium, Thermoanaerobacterium saccharolyticum. Enzyme Microb Technol 42(6):453–458

    Article  CAS  Google Scholar 

  31. Shaw AJ, Podkaminer KK, Desai SG et al (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 105(37):13769–13774

    Article  CAS  Google Scholar 

  32. Rabinovich ML, Melnik MS, Boloboba AV (2002) Microbial cellulases (review). Appl Biochem Microbiol 38(4):305–321

    Article  CAS  Google Scholar 

  33. Harrison MJ, Nouwens AS, Jardine DR et al (1998) Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur J Biochem 256(1):119–127

    Article  CAS  Google Scholar 

  34. Srisodsuk M, Reinikainen T, Penttila M et al (1993) Role of the interdomain linker peptide of Trichoderma-reesei cellobiohydrolase-I in its interaction with crystalline cellulose. J Biol Chem 268(28):20756–20761

    CAS  Google Scholar 

  35. Knowles J, Lehtovaara P, Teeri T (1987) Cellulase families and their genes. Trends Biotechnol 5(9):255–261

    Article  CAS  Google Scholar 

  36. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391

    Article  CAS  Google Scholar 

  37. Ingram LO, Aldrich HC, Borges AC et al (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15(5):855–866

    Article  CAS  Google Scholar 

  38. Tao H, Gonzalez R, Martinez A et al (2001) Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J Bacteriol 183(10):2979–2988

    Article  CAS  Google Scholar 

  39. Zhou S, Davis FC, Ingram LO (2001) Gene integration and expression and extracellular secretion of Erwinia chrysanthemi endoglucanase CelY (celY) and CelZ (celZ) in ethanologenic Klebsiella oxytoca P2. Appl Environ Microbiol 67(1):6–14

    Article  CAS  Google Scholar 

  40. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266

    Article  CAS  Google Scholar 

  41. Wood BE, Yomano LP, York SW et al (2005) Development of industrial-medium-required elimination of the 2,3-butanediol fermentation pathway to maintain ethanol yield in an ethanologenic strain of Klebsiella oxytoca. Biotechnol Prog 21(5):1366–1372

    Article  CAS  Google Scholar 

  42. Yanase H, Nozaki K, Okamoto K (2005) Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis. Biotechnol Lett 27(4):259–263

    Article  CAS  Google Scholar 

  43. Okamoto T, Yamano S, Ikeaga H et al (1994) Cloning of the Acetobacter xylinum cellulase gene and its expression in Escherichia coli and Zymomonas mobilis. Appl Microbiol Biotechnol 42(4):563–568

    CAS  Google Scholar 

  44. Brestic-Goachet N, Gunasekaran P, Cami B et al (1989) Transfer and expression of an Erwinia chrysanthemi cellulase gene in Zymomonas mobilis. J Gen Microbiol 135(4):893–902

    CAS  Google Scholar 

  45. Lejeune A, Eveleigh DE, Colson C (1988) Expression of an endoglucanase gene of Pseudomonas fluorescens var cellulosa in I. FEMS Microbiol Lett 49(3):363–366

    Article  CAS  Google Scholar 

  46. Misawa N, Okamoto T, Nakamura K (1988) Expression of a cellulase gene in Zymomonas mobilis. J Biotechnol 7(3):167–178

    Article  CAS  Google Scholar 

  47. Linger JG, Adney WS, Darzins A (2010) Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl Environ Microbiol 76(19):6360–6369

    Article  CAS  Google Scholar 

  48. Penttila ME, Andre L, Lehtovaara P et al (1988) Efficient secretion of 2 fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63(1):103–112

    Article  CAS  Google Scholar 

  49. Van Rensburg P, Van Zyl WH, Pretorius IS (1998) Engineering yeast for efficient cellulose degradation. Yeast 14(1):67–76

    Article  Google Scholar 

  50. van Rensburg P, van Zyl WH, Pretorius IS (1996) Co-expression of a Phanerochaete chrysosporium cellobiohydrolase gene and a Butyrivibrio fibrisolvens endo-beta-1,4-glucanase gene in Saccharomyces cerevisiae. Curr Genet 30(3):246–250

    Article  Google Scholar 

  51. Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30(9):1515–1524

    Article  CAS  Google Scholar 

  52. Prior BA, Kilian SG, Dupreez JC (1989) Fermentation of D-Xylose by the Yeasts Candida shehatae and Pichia stipitis—prospects and problems. Proc Biochem 24(1):21–32

    CAS  Google Scholar 

  53. Slininger PJ, Bolen PL, Kurtzman CP (1987) Pachysolen tannophilus—properties and process considerations for ethanol-production from D-xylose. Enzyme Microb Technol 9(1):5–15

    Article  CAS  Google Scholar 

  54. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17(3):320–326

    Article  CAS  Google Scholar 

  55. Agbogbo FK, Coward-Kelly G, Torry-Smith M et al (2006) Fermentation of glucose/xylose mixtures using Pichia stipitis. Proc Biochem 41(11):2333–2336

    Article  CAS  Google Scholar 

  56. Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol 19(3):220–225

    Article  CAS  Google Scholar 

  57. Schneider H, Wang PY, Chan YK et al (1981) Conversion of D-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol Lett 3(2):89–92

    Article  CAS  Google Scholar 

  58. Wisselink HW, Toirkens MJ, Berriel MDF et al (2007) Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl Environ Microbiol 73(15):4881–4891

    Article  CAS  Google Scholar 

  59. Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol 69(7):4144–4150

    Article  CAS  Google Scholar 

  60. Richard P, Verho R, Putkonen M et al (2003) Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Res 3(2):185–189

    Article  CAS  Google Scholar 

  61. Karhumaa K, Wiedemann B, Hahn-Hagerdal B et al (2006) Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 5:18

    Article  Google Scholar 

  62. Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64(1):34–50

    Article  CAS  Google Scholar 

  63. Vanarsdell JN, Kwok S, Schweickart VL et al (1987) Cloning, characterization, and expression in Saccharomyces cerevisiae of endoglucanase-I from Trichoderma-reesei. Biotechnology 5(1):60–64

    Article  CAS  Google Scholar 

  64. Idiris A, Tohda H, Kumagai H et al (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403–417

    Article  CAS  Google Scholar 

  65. Karsch T, Stahl U, Esser K (1983) Ethanol production by Zymomonas and Saccharomyces, advantages and disadvantages. Eur J Appl Microbiol Biotechnol 18(6):387–391

    Article  CAS  Google Scholar 

  66. van Rooyen R, Hahn-Hagerdal B, La Grange DC et al (2005) Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120(3):284–295

    Article  Google Scholar 

  67. McBride JE, Zietsman JJ, Van Zyl WH et al (2005) Utilization of cellobiose by recombinant beta-glucosidase-expressing strains of Saccharomyces cerevisiae: characterization and evaluation of the sufficiency of expression. Enzyme Microb Technol 37(1):93–101

    Article  CAS  Google Scholar 

  68. Wood TM (1992) Fungal cellulases. Biochem Soc Trans 20(1):46–53

    CAS  Google Scholar 

  69. Den Haan R, Mcbride JE, La Grange DC et al (2007) Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Technol 40(5):1291–1299

    Article  Google Scholar 

  70. Millis NF (1956) A study of the cider-sickness bacillus; a new variety of Zymomonas anaerobia. J Gen Microbiol 15(3):521–528

    Article  CAS  Google Scholar 

  71. Rogers PL, Jeon YJ, Lee KJ et al (2007) Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol 108:263–288

    CAS  Google Scholar 

  72. Lee KJ, Lefebvre M, Tribe DE et al (1980) High productivity ethanol fermentations with Zymomonas mobilis using continuous cell recycle. Biotechnol Lett 2(11):487–492

    Article  CAS  Google Scholar 

  73. Lee KJ, Skotnicki ML, Tribe DE et al (1980) Kinetic-studies on a highly productive strain of Zymomonas mobilis. Biotechnol Lett 2(8):339–344

    Article  CAS  Google Scholar 

  74. Rogers PL, Lee KJ, Tribe DE (1980) High productivity ethanol fermentations with Zymomonas mobilis. Proc Biochem 15(6):7–11

    CAS  Google Scholar 

  75. Lee KJ, Tribe DE, Rogers PL (1979) Ethanol-production by Zymomonas mobilis in continuous culture at high glucose concentrations. Biotechnol Lett 1(10):421–426

    Article  CAS  Google Scholar 

  76. Rogers PL, Lee KJ, Tribe DE (1979) Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations. Biotechnol Lett 1(4):165–170

    Article  CAS  Google Scholar 

  77. Skotnicki ML, Lee KJ, Tribe DE et al (1981) Comparison of ethanol-production by different Zymomonas strains. Appl Environ Microbiol 41(4):889–893

    CAS  Google Scholar 

  78. Swings J, Deley J (1977) Biology of Zymomonas. Bacteriol Rev 41(1):1–46

    CAS  Google Scholar 

  79. Spangler DJ, Emert GH (1986) Simultaneous saccharification fermentation with Zymomonas mobilis. Biotechnol Bioeng 28(1):115–118

    Article  CAS  Google Scholar 

  80. Lee JH, Pagan RJ, Rogers PL (1983) Continuous simultaneous saccharification and fermentation of starch using Zymomonas mobilis. Biotechnol Bioeng 25(3):659–669

    Article  CAS  Google Scholar 

  81. McMillan JD, Newman MM, Templeton DW et al (1999) Simultaneous saccharification and co-fermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylose-fermenting Zymomonas mobilis. Appl Biochem Biotechnol 77–9:649–665

    Article  Google Scholar 

  82. Metabolic Engineering of a Pentose Metabolism Pathway in Ethanologenic Zymomonas mobilis Min Zhang, Christina Eddy, Kristine Deanda, Mark Finkelstein, and Stephen Picataggio Science 13 January 1995: 267 (5195), 240-243. [DOI:10.1126/science.267.5195.240]

    Google Scholar 

  83. Deanda K, Zhang M, Eddy C et al (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62(12):4465–4470

    CAS  Google Scholar 

  84. Carey VC, Walia SK, Ingram LO (1983) Expression of a lactose transposon (Tn951) in Zymomonas mobilis. Appl Environ Microbiol 46(5):1163–1168

    CAS  Google Scholar 

  85. Yanase H, Kurii J, Tonomura K (1986) Construction of a promoter-cloning vector in Zymomonas mobilis. Agric Biol Chem 50(11):2959–2961

    Article  CAS  Google Scholar 

  86. Byun MOK, Kaper JB, Ingram LO (1986) Construction of a new vector for the expression of foreign genes in Zymomonas mobilis. J Ind Microbiol 1(1):9–15

    Article  CAS  Google Scholar 

  87. Yoon P (1988) Pack, transfer of bacillus subtilis endo-β-1,4-glucanase gene into Zymomonas anaerobia. Biotechnol Lett 10(3):213–216

    Article  CAS  Google Scholar 

  88. Sandkvist M (2001) Biology of type II secretion. Mol Microbiol 40(2):271–283

    Article  CAS  Google Scholar 

  89. Lee PA, Tullman-Ercek D, Georgiou G (2006) The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60:373–395

    Article  Google Scholar 

  90. Mergulhao FJ, Summers DK, Monteiro GA (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23(3):177–202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey G. Linger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Linger, J.G., Darzins, A. (2013). Consolidated Bioprocessing. In: Lee, J. (eds) Advanced Biofuels and Bioproducts. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3348-4_16

Download citation

Publish with us

Policies and ethics