Skip to main content

Homeostatic Mechanisms in the Cochlea

  • Chapter
The Cochlea

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 8))

Abstract

The challenge of every cell is to maintain intracellular conditions that may vastly differ from the external environment, yet still communicate with this environment. Walter Cannon (1929) first applied the term “homeostasis” to the concept, originally formulated by Claude Bernard (1878), of the constancy of the milieu interne as essential for the existence of free-living organisms. Broadly defined, homeostasis represents the sum of the physiological processes in an organism, a multicellular system, or a cell that maintain the relative stability of its internal environment and thus provide the basis for its survival and function. The inner ear, as suggested by Hawkins (1973), possesses a variety of microhomeostatic mechanisms that sustain the integrity, sensitivity, and dynamic range of the organ of Corti. They make possible its function as a transducer, although they do not include the transduction process itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812–1815.

    Article  PubMed  CAS  Google Scholar 

  • Altschuler RA, Lim HH, Ditto J, Dolan D, Raphael Y (1996) Protective mechanisms in the cochlea: heat shock proteins. In: Salvi RJ, Henderson D, Fiorini F, Colletti V (eds) Auditory Plasticity and Regeneration. New York: Tieman Medical Publications (in press).

    Google Scholar 

  • Ashmore JF, Ohmori H (1990) Control of intracelular calcium by ATP in isolated outer hair cells of the guinea-pig cochlea. J Physiol 428:109–131.

    PubMed  CAS  Google Scholar 

  • Avila MA, Varela-Nieto I, Romero G, Mato JM, Giraldez F, Van de Water TR, Represa J (1993) Brain-derived neurotrophic factor and neurotrophin-3 support the survival and neuritogenesis response of developing cochleovestibular ganglion neurons. Dev Biol 159:266–275.

    Article  PubMed  Google Scholar 

  • Bagger-Sjöbäck D, Filipek CS, Schacht J (1980) Characteristics and drug responses of cochlear and vestibular adenylate cyclase. Arch Otorhinolaryngol 228:217–222.

    Article  PubMed  Google Scholar 

  • Bartolami S, Ripoll C, Planche M, Pujol R (1993) Localisation of functional muscarinic receptors in the rat cochlea: evidence for efferent presynaptic auto-receptors. Brain Res 626:200–209.

    Article  PubMed  CAS  Google Scholar 

  • Bernard C (1878) Leçons sur les phénomènes de la vie. Paris: Baillière.

    Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325.

    Article  PubMed  CAS  Google Scholar 

  • Bobbin RP, Fallon M, Puel J-L, Bryant G, Bledsoe SC, Zajic G, Schacht J (1990) Acetylcholine, carbachol, and GABA induce no detectable change in the length of isolated outer hair cells. Hear Res 47:39–52.

    Article  PubMed  CAS  Google Scholar 

  • Bobbin RP, Fallon M, Kujawa SG (1991) Magnitude of the negative summating potential varies with perilymph calcium leevls. Hear Res 56:101–110.

    Article  PubMed  CAS  Google Scholar 

  • Bosher SK, Warren RL (1971) A study of the electrochemistry and osmotic relationships of the cochlear fluids in the neonatal rat at the time of the development of the endocochlear potential. J Physiol (Lond) 212:739–761.

    CAS  Google Scholar 

  • Bosher SK, Warren RL (1978) Very low calcium content of cochlear endolymph, an extracellular fluid. Nature 273:377–378.

    Article  PubMed  CAS  Google Scholar 

  • Brechtelsbauer PB, Prazma J, Garrett CG, Carrasco VN, Pillsbury HC 3d (1990) Catecholaminergic innervation of the inner ear. Otolaryngol Head Neck Surg 103:566–574.

    PubMed  CAS  Google Scholar 

  • Brechtelsbauer PB, Nuttall AL, Miller JM (1994) Basal nitric oxide production in regulation of cochlear blood flow. Hear Res 77:38–42.

    Article  PubMed  CAS  Google Scholar 

  • Brown JN, Nuttall AL (1994) Autoregulation of cochlear blood flow in the guinea pig. Am J Physiol 266:458–467.

    Google Scholar 

  • Canlon B, Schacht J (1983) Acoustic stimulation alters deoxyglucose uptake in the mouse cochlea and inferior colliculus. Hear Res 10:217–226.

    Article  PubMed  CAS  Google Scholar 

  • Canlon B, Homburger V, Bockaert J (1991) The identification and localization of the guanine nucleotide protein Go in the auditory system. Eur J Neurosci 3:1338–1342.

    Article  PubMed  Google Scholar 

  • Cannon WB (1992) Organization for physiological homeostasis. Physiol Rev 9:399–431.

    Google Scholar 

  • Coling DE, Schacht J (1991) Protein phosphorylation in the organ of Corti: differential regulation by second messengers between base and apex. Hear Res 57:113–120.

    Article  PubMed  CAS  Google Scholar 

  • Crist JR, Fallon M, Bobbin RP (1993) Volume regulation in cochlear outer hair cells. Hear Res 69:194–198.

    Article  PubMed  CAS  Google Scholar 

  • Crone C (1965) Facilitated transfer of glucose from blood into brain tissue. J Physiol (Lond) 181:103–113.

    CAS  Google Scholar 

  • Dallos P (1973) Cochlear potentials. In: Dallos P (ed) The Auditory Periphery: Biophysics and Physiology. New York: Academic Press, pp. 218–390.

    Google Scholar 

  • Davis H (1957) Biophysics and physiology of the inner ear. Physiol Rev 37:1–49.

    PubMed  CAS  Google Scholar 

  • Davis H (1965) A model for transducer action in the cochlea. Cold Spring Harbor Symp Quant Biol 30:181–190.

    Article  CAS  Google Scholar 

  • Dechesne CJ, Winsky L, Moniot B, Raymond J (1993) Localization of calretinin mRNA in rat and guinea pig inner ear by in situ hydridisation using radioactive and non-radioactive probes. Hear Res 69:91–97.

    Article  PubMed  CAS  Google Scholar 

  • Ding JP, Salvi RJ, Sach F (1991) Stretch-activated ion channels in guinea pig outer hair cells. Hear Res 56:19–28.

    Article  PubMed  CAS  Google Scholar 

  • Doi K, Mori N, Matsunaga T (1990) Effects of forskolin and 1,9-dideoxy-forskolin on cochlear potentials. Hear Res 45:157–163.

    Article  PubMed  CAS  Google Scholar 

  • Doi T, Ohmori H (1993) Acetylcholine increases intracellular Ca2+ concentration and hyperpolarizes the guinea-pig outer hair cell. Hear Res 67:179–188.

    Article  PubMed  CAS  Google Scholar 

  • Drescher DG, Upadhyay S, Wilcox E, Fex J (1992) Analysis of muscarinic receptor subtypes in the mouse cochlea by means of the polymerase chain reaction. J Neurochem 59:765–767.

    Article  PubMed  CAS  Google Scholar 

  • Dulon D, Schacht J (1992) Motility of cochlear outer hair cells. Am J Otol 13:108–112.

    PubMed  CAS  Google Scholar 

  • Dulon D, Aran J-M, Schacht J (1987) Osmotically induced motility of outer hair cells: implications for Meniere’s disease. Arch Otorhinolaryngol 244:104–107.

    Article  PubMed  CAS  Google Scholar 

  • Dulon D, Zajic G, Schacht J (1989) Photo-induced irreversible shortening and swelling of isolated cochlear outer hair cells. Int J Radiat Biol 55:1007–1014.

    Article  PubMed  CAS  Google Scholar 

  • Dulon D, Zajic G, Schacht J (1990) Increasing intracellular free calcium induces circumferential contractions in isolated outer hair cells. J Neurosci 10:1388–1397.

    PubMed  CAS  Google Scholar 

  • Dulon D, Mollard P, Aran J-M (1991) Extracellular ATP elevates cytosolic Ca2+ incochlear inner hair cells. NeuroReport 2:69–72.

    Article  PubMed  CAS  Google Scholar 

  • Dulon D, Moataz R, Mollard P (1993) Characterization of Ca2+ signals generated by extracellular nucleotides in supporting cells of the organ of Corti. Cell Calcium 14:245–254.

    Article  PubMed  CAS  Google Scholar 

  • Dulon D, Zajic G, Schacht J (1993) InsP3 releases intracellular stored calcium in Deiters’ cells of the organ of Corti. Abs Assoc Res Otolaryngol 16:117.

    Google Scholar 

  • Dulon D, Blanchet C, Laffon E (1994) Photo-released intracellular Ca2+ evokes reversible mechanical responses in supporting cells of the guinea-pig organ of Corti. Biochem Biophys res Commun 201:1263–1269.

    Article  PubMed  CAS  Google Scholar 

  • Duvall AJ, Rhodes VT (1967) Reissner’s membrane. An ultrastructural study. Arch Ototlaryngol 86:143–151.

    Article  Google Scholar 

  • ElBarbary A, Altschuler R, Schacht J (1993) Glutathione S-transferase in the organ of Corti of the rat: enzymatic activity, subunit composition and immunohistochemical localization. Hear Res 71:80–90.

    Article  CAS  Google Scholar 

  • Erostegui C, Norris CH, Bobbin RP (1994) In vitro pharmacologic characterization of a cholinegic receptor on outer hair cells. Hear Res 74:135–147.

    Article  PubMed  CAS  Google Scholar 

  • Erulkar SD, Maren TH (1961) Carbonic anhydrase in the inner ear. Nature 189:459–460.

    Article  PubMed  CAS  Google Scholar 

  • Eveloff JL, Warnock DG (1987) Activation of ion transport systems during cell volume regulation. Am J Physiol 252:F1–F10.

    PubMed  CAS  Google Scholar 

  • Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73:309–373.

    PubMed  CAS  Google Scholar 

  • Eybalin M, Pujol R (1983) A radioautographic stdy of [3H]L-glutamate and [3H]L-glutamine uptake in the guinea pig cochlea. Neuroscience 9:863–871.

    Article  PubMed  CAS  Google Scholar 

  • Eybalin M, Ripoll C (1990) Immunolocalisation de la parvalbumine dans deux types de cellules glutamatergiques de la cochlée du cobaye: les cellules ciliées internes et les neurones du ganglion spiral. CR Acad Sci Paris 310:639–644.

    CAS  Google Scholar 

  • Eybalin M, Parnaud C, Geffard M, Pujol R (1988) Immunoelectron microscopy identifies several types of GABA-containing efferent synapses in the guinea-pig organ of Corti. Neuroscience 24:29–38.

    Article  PubMed  CAS  Google Scholar 

  • Farber JL (1990) The role of calcium in lethal cell injury. Chem Res Toxicol 3:503–508.

    Article  PubMed  CAS  Google Scholar 

  • Ferrary E, Sterkers O, Saumon G, Tran Ba Huy P, Amiel C (1987) Facilitated transfer of glucose from blood into perilymph in the rat cochlea. Am J Physiol 253:F59–F65.

    PubMed  CAS  Google Scholar 

  • Ferrary E, Tran Ba Huy P, Roinel N, Bernard C, Amiel C (1988) Calcium and the inner ear fluids. Acta Otolaryngol Suppl (Stockh) 460:13–17.

    Article  CAS  Google Scholar 

  • Ferrary E, Bernard C, Oudar O, Sterkers O, Amiel C (1989) Sodium transfer from endolymph through a luminal amiloride-sensitive channel. Am J Physiol 257:F182–F189.

    PubMed  CAS  Google Scholar 

  • Ferrary E, Barnard C, Oudar O, Loiseau A, Sterkers O, Amiel C (1993) N-Ethylmaleimide-inhibited electrogenic K+ secretion in the ampulla of the frog semicircular canal. J Physiol (Lond) 461:451–465.

    CAS  Google Scholar 

  • Fessenden JD, Coling DE, Schacht J (1994) Detection and characterization of nitric oxide synthase in the mammalian cochlea. Brain Res 668:9–15.

    Article  PubMed  CAS  Google Scholar 

  • Flock A, Flock B, Ulfendahl M (1986) Mechanisms of movement in OHCs and a possible structural basis. Arch Otorhinolaryngol 243:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum F (1991) Neurochemical studies on glutamate-mediated neurotransmission. In: Meldrum BS, Moroni F, Woods JH (eds) Excitatory Amino Acids. New York: Raven Press, pp. 15–25.

    Google Scholar 

  • Foster JD, Drescher MJ, Hatfield JS, Drescher DG (1994) Immunohistochemical localization of S-100 protein in auditory and vestibular end organs of the mouse and hamster. Hear Res 74:67–76.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs PA, Murrow BW (1992a) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12:800–809.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Morrow BW (1992b) A novel cholinergic receptor mediates inhibition of chick cochlear hair cells. Proc R Soc Lond B 248:35–40.

    Article  CAS  Google Scholar 

  • Gitter AH (1992) The length of isolated outer hair cells is temperature dependent. ORL 54:121–123.

    Article  PubMed  CAS  Google Scholar 

  • Gross PM, Teasdale GM, Anerson WJ, Harper AM (1981) FP-receptors mediate increases in permeability of the blood-brain barrier during arterial histamine infusion. Brain Res 210:396–400.

    Article  PubMed  CAS  Google Scholar 

  • Guiramand J, Mayat E, Bartolami S, Lenoir M, Rumigny J-F, Pujol R, Récasens M (1990) A M3 muscarinic receptor coupled to inositol phosphate formation in the rat cochlea? Biochem Pharmacol 39:1913–1919.

    Article  PubMed  CAS  Google Scholar 

  • Gulley RL, Reese TS (1976) Intercellular junctions in the reticular lamina of the organ of Corti. J Neurocytol 5:479–507.

    Article  PubMed  CAS  Google Scholar 

  • Gulley RL, Fex J, Wenthold RJ (1979) Uptake of putative transmitters in the organ of Corti. Acta Otolaryngol 88:177–182.

    Article  PubMed  CAS  Google Scholar 

  • Guth PS, Stockwell M (1977) Guanylate cyclase and cyclic guanosine monophosphate in the guinea-pig cochlea. J Neurochem 28:263–265.

    Article  PubMed  CAS  Google Scholar 

  • Hara A, Salt AN, Thalmann R (1989) Perilymph composition in scala tympani of the cochlea: influence of cerebrospinal fluid. Hear Res 42:265–271.

    Article  PubMed  CAS  Google Scholar 

  • Harada N, Ernst A, Zenner HP (1993) Hyposmotic activation hyperpolarizes outer hair cells of guinea pig cochlea. Brain Res 614:205–211.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins JE Jr (1971) The role of vasoconstriction in noise-induced hearing loss. Ann Otol Rhinol Laryngol 80:903–913.

    PubMed  Google Scholar 

  • Hawkins JE (1973) Comparative otopathology: aging, noise, and ototoxic drugs. Adv Otorhinolaryngol 20:125–141.

    PubMed  Google Scholar 

  • Hawkins JE Jr, Johnsson L-G, Preston RE (1972) Cochlear microvasculature in normal and damaged ears. Laryngoscope 82:1091–1104.

    Article  PubMed  Google Scholar 

  • Henson JH, Begg DA, Beaulieu SM, Fishkind DJ, Bonder EM, Terasaki M, Lebeche D, Kaminer B (1989) A calsequestrin-like protein in the endoplasmic reticulum of the sea urchin: localization and dynamics in the egg first cell cycle embryo. J Cell Biol 109:149–161.

    Article  PubMed  CAS  Google Scholar 

  • Holley MC, Richardson GP (1994) Monoclonal antibodies specific for endoplasmic membranes of mammalian cochlear outer hair cells. J Neurocytol 23:87–96.

    Article  PubMed  CAS  Google Scholar 

  • Housley GD, Ashmore JF (1991) Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea. Proc R Soc Lond B 244:161–167.

    Article  CAS  Google Scholar 

  • Housley GD, Greenwood D, Ashmore JF (1992) Localization of cholinergic and purinergic receptors on outer hair cells isolated from the guinea-pig cochlea. Proc R Soc Lond B 249:265–273.

    Article  CAS  Google Scholar 

  • Ikeda K, Morizono T (1989) Electrochemical profiles for monovalent ions in the stria vascularis: cellular model of ion transport mechanisms. Hear Res 39:279–286.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Morizono T (1990) Electrochemical aspects of cations in the cochlear hair cell of the chinchilla: a cellular model of the ion movement. Eur Arch Otorhinolaryngol 247:43–47.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Takasaka T (1993) Confocal laser microscopical images of calcium distribution and intracellular organelles in the outer hair cell isolated from the guinea pig cochlea. Hear Res 66:169–176.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Kusakari J, Takasaka T, Saito Y (1987) The Ca2+ activity of cochlear endolymph of the guinea pig and the effect of inhibitors. Hear Res 26:117–125.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Saito Y, Sunose H, Nishiyama A, Takasaka T (1991) Effects of neuroregulators on the intracellular calcium level in the outer hair cell isolated from the guinea pig. ORL 53:78–81.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Saito Y, Nishiyama A, Takasaka T (1992a) Intracellular pH regulation in isolated cochlear outer hair cells of the guinea pig. J Physiol 447:627–648.

    PubMed  CAS  Google Scholar 

  • Ikeda K, Saito Y, Nishiyama A, Takasaka T (1992b) Sodium-calcium exchange in the isolated cochlear outer hair cells of the guinea pig studied by fluorescence image microscopy. Pflügers Arch 420:493–499.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Sunose H, Takasaka T (1993) Effects of free radicals on the intracellular calcium concentration in the isolatd outer hair cell of the guinea pig cochlea. Acta Otolaryngol (Stockh) 113:137–141.

    Article  CAS  Google Scholar 

  • Inamura N, Salt AN (1992) Permeability changes of the blood-labyrinth barrier measured in vivo during experimental treatments. Hear Res 61:12–18.

    Article  PubMed  CAS  Google Scholar 

  • Ishiyama E, Keels EW, Weibel J (1970) New anatomical aspects of the vasculoepithelial zone of the spiral limbus in mammals. An electron microscopic study. Acta Otolaryngol (Stockh) 70:319–328.

    Article  CAS  Google Scholar 

  • Ito M, Spicer SS, Schulte BA (1993) Immunohistochemical localization of brain type glucose transporter in mammalian inner ears: comparison of developmental and adult stages. Hear Res 71:230–238.

    Article  PubMed  CAS  Google Scholar 

  • Iwano T, Yamamoto A, Omori K, Akayama M, Kumazawa T, Tashiro Y (1989) Quantitative immunocytochemical localization of Na+, K +-ATPase a-subunit in the lateral wall of rat cochlear duct. J Histochem Cytochem 37:353–363.

    Article  PubMed  CAS  Google Scholar 

  • Iwasa KH, Mizuta K, Lin DJ, Benos DJ, Tachibana M (1994) Amiloride-sensitive channels in marginal cells in the stria vascularis of the guinea pig cochlea. Neurosci Lett 172:163–166.

    Article  PubMed  CAS  Google Scholar 

  • Jahnke K (1975) The fine structure of free-fractured intercellular junctions in the guinea pig inner ear. Acta Otolaryngol Suppl (Stoch) 336:1–40.

    CAS  Google Scholar 

  • Jahnke K (1980) The blood-perilymph barrier. Arch Otorhinolaryngol 228:29–34.

    Article  PubMed  CAS  Google Scholar 

  • Johnstone BM, Sellick PM (1972) The peripheral auditory apparatus. Q Rev Biophys 5:1–57.

    Article  Google Scholar 

  • Johnstone BM, Patuzzi R, Syka J, Sykova E (1989) Stimulus-related potassium changes in the organ of Corti of guinea-pig. J Physiol (Lond) 408:77–92.

    CAS  Google Scholar 

  • Jones-Mumby CJ, Axelsson A (1984) The vascular anatomy of the gerbil cochlea. Am J Otolaryngol 5:127–137.

    Article  PubMed  CAS  Google Scholar 

  • Juhn SK, Youngs JN (1976) The effect on perilymph of the alteration of serum glucose or calcium concentration. Laryngoscope 86:273–279.

    Article  PubMed  CAS  Google Scholar 

  • Juhn SK, Rybak LP, Prado S (1981) Nature of blood-labyrinth barrier in experimental conditions. Ann Otol Rhinol Laryngol 90:135–141.

    PubMed  CAS  Google Scholar 

  • Julien N, Loiseau A, Sterkers O, Amiel C, Ferrary E (1994) Antidiuretic hormone restore the endolymphatic longitudinal K+ gradient in the Brattleboro rat cochlea. Pflügers Arch 426:446–452.

    Article  PubMed  CAS  Google Scholar 

  • Kambayashi J, Kobayashi T, Demott JE, Marcus NY, Thalmann I, Thalmann R (1982a) Effect of substrate-free vascular perfusion upon cochlear potentials and glycogen of the stria vascularis. Hear Res 6:223–240.

    Article  PubMed  CAS  Google Scholar 

  • Kambayashi J, Kobayashi T, Demott JE, Marcus NY, Thalmann I, Thalmann R (1982b) Minimal concentrations of metabolic substrates capable of supporting cochlear potentials. Hear Res 7:105–114.

    Article  PubMed  CAS  Google Scholar 

  • Katzman R (1976) Maintenance of a constant brain extracellular potassium. Fed Proc 35:1244–1247.

    PubMed  CAS  Google Scholar 

  • Kerr TP, Ross MD, Ernst SA (1982) Cellular localization of Na+, K+-ATPase in the mammalian cochlear duct: significance for cochlear fluid balance. Am J Otolaryngol 3:332–338.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berlin) 191:101–118.

    Article  CAS  Google Scholar 

  • Kimura RS (1969) Distribution, structure, and function of dark cells in the vestibular labyrinth. Ann Otol Rhinol Laryngol 78:542–561.

    PubMed  CAS  Google Scholar 

  • Kimura RS, Nye CL, Southard RE (1990) Normal and pathologic features of the limbus spiralis and its functional significance. Am J Otolaryngol 11:99–111.

    Article  PubMed  CAS  Google Scholar 

  • Koch T, Zenner HP (1988) Adenylate cyclase and G-proteins as a signal transfer system in the guinea pig inner ear. Arch Otorhinolaryngol 245:82–87.

    Article  PubMed  CAS  Google Scholar 

  • Koch T, Gloddek B, Gutzke S (1992) Binding sites of atrial natriuretic peptide (ANP) in the mammalian cochlea and stimulation of cyclic GMP synthesis. Hear Res 63:197–202.

    Article  PubMed  CAS  Google Scholar 

  • Komune S, Nakagawa T, Hisashi K, Kimituki T, Uemura T (1993) Movement of monovalent ions across the membranes of marginal cells of the stria vascularis in the guinea pig cochlea. ORL J Otorhinolaryngol Relat Spec 55:61–67.

    Article  PubMed  CAS  Google Scholar 

  • Konishi T, Butler RA, Fernández C (1961) Effect of anoxia on cochlear potentials. J Acoust Soc Am 33:349–356.

    Article  Google Scholar 

  • Konishi T, Hamrick PE (1978) Ion transport in the cochlea of guinea pig. II. Chloride transport. Acta Otolaryngol (Stockh) 86:176–184.

    Article  CAS  Google Scholar 

  • Konishi T, Kelsey E (1973) Effect of potassium deficiency on cochlear potentials and cation contents of the endolymph. Acta Otolaryngol (Stockh) 76:410–418.

    Article  CAS  Google Scholar 

  • Konishi T, Mendelsohn M (1970) Effect of oubain on cochlear potentials and endolymph composition in guinea pigs. Acta Otolaryngol (Stockh) 69:192–199.

    Article  CAS  Google Scholar 

  • Konishi T, Mori H (1984) Permeability to sodium ions of the endolymph-perilymph barrier. Hear Res 15:143–149.

    Article  PubMed  CAS  Google Scholar 

  • Konishi T, Hamrick PE, Walsh PJ (1978) Ion transport in guinea pig cochlea. I. Potassium and sodium transport. Acta Otolaryngol (Stockh) 86:22–34.

    Article  CAS  Google Scholar 

  • Konishi T, Hamrick PE, Mori H (1984) Water permeability of the endolymph-perilymph barrier in the guinea pig cochlea. Hear Res 15:51–58.

    Article  PubMed  CAS  Google Scholar 

  • Kronester-Frei A (1979) The effect of changes in endolymphatic ion concentrations on the tectorial membrane. Hear Res 1:81–94.

    Article  PubMed  CAS  Google Scholar 

  • Kuijpers W, Bonting SL (1969) Studies on (Na+ -K+)-ATPase. XXIV. Localization and properties of ATPase in the inner ear of the guinea pig. Biochim Biophys Acta 173:477–485.

    Article  PubMed  CAS  Google Scholar 

  • Kuijpers W, Bonting SL (1970) The cochlear potentials. II. The nature of the cochlear endolymphatic resting potential. Pflügers Arch 320:359–372.

    Article  PubMed  CAS  Google Scholar 

  • Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1992) Intracochlear application of acetylcholine alters sound-induced mechanical events within the cochlear partition. Hear Res 61:106–116.

    Article  PubMed  CAS  Google Scholar 

  • Kujawa SG, Fallon M, Bobbin RP (1994) ATP antagonists cibaron blue, basilen blue and suramin alter sound-evoked responses of the cochlea and eighth nerve. Hear Res 78:181–188.

    Article  PubMed  CAS  Google Scholar 

  • Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1994) A nicotinic-like receptor mediates suppression of distortion product otoacoustic emissions by contralateral sound. Hear Res 74:122–134.

    Article  PubMed  CAS  Google Scholar 

  • Kusakari J, Ise I, Comegys TH, Thalmann I, Thalmann R (1978a) Effect of ethacrynic acid, furosemide, and ouabain upon the endolymphatic potential and upon high energy phosphates of the stria vascularis. Laryngoscope 88:12–37.

    PubMed  CAS  Google Scholar 

  • Kusakari J, Ise I, Comegys TH, Thalmann I, Thalmann R (1978b) Reduction of the endocochlear potential by the new “loop” diuretic, bumetanide. Acta Otolaryngol (Stockh) 86:336–341.

    CAS  Google Scholar 

  • Lamm K, Zajic G, Schacht J (1994) Living isolated smooth muscle cells, pericytes and endothelial cells from inner ear vessels: a new approach to study the regulation of cochlear microcirculation and permeability. Hear Res 81:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Laurikainen EA, Kim D, Didier A, Ren T, Miller JM, Quirk WS, Nuttall AL (1993) Stellate ganglion drives sympathetic regulation of cochlear blood flow. Hear Res 64:199–204.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence M, Nuttall AL (1972) Oxygen availability in tunnel of Corti measured by microelectrode. J Acoust Soc Am 52:566–573.

    Article  Google Scholar 

  • Legrand C, Brehier A, Clavel MC, Thomasset M, Rabie A (1988) Cholecalcin (28-kDa CaBP) in the rat cochlea. Development in normal and hypothyroid animals. An immunocytochemical study. Brain Res 466:121–129.

    PubMed  CAS  Google Scholar 

  • Lim D, Karabinas C, Trune DR (1983) Histochemical localization of carbonic anhydrase in the inner ear. Am J Otolaryngol 4:33–42.

    Article  PubMed  CAS  Google Scholar 

  • Lim HH, Jenkins OH, Myers MW, Miller JM, Altschuler RA (1993) Detection of HSP 72 synthesis after acoustic overstimulation in rat cochlea. Hear Res 69:146–150.

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Kozakura K, Marcus DC (1995) Evidence for purinergic receptors in vestibular dark cell and strial marginal cell epithelia of the gerbil. Audit Neurosci 1:331–340.

    CAS  Google Scholar 

  • Loewenstein WR (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 61:829–913.

    PubMed  CAS  Google Scholar 

  • Loewenstein WR, Nakas M, Socolar SJ (1967) Junctional membrane uncoupling. Permeability transformation at a cell membrane junction. J Gen Physiol 50:1865–1891.

    Article  PubMed  CAS  Google Scholar 

  • Marcus DC (1984) Characterization of potassium permeability of cochlear duct by perilymphatic perfusion of barium. Am J Physiol 247:C240–C246.

    PubMed  CAS  Google Scholar 

  • Marcus DC, Shen Z (1994) Slowly activating, voltage-dependent K+ conductance is apical pathway for K+ secretion in vestibular dark cells. Am J Physiol Cell Physiol 267:C857–864.

    CAS  Google Scholar 

  • Marcus DC, Shipley A (1994) Potassium secretion by vestibular dark cell epithelium demonstrated by vibrating probe. Biophys J 66:1939–1942.

    Article  PubMed  CAS  Google Scholar 

  • Marcus DC, Marcus NY, Thalmann R (1981) Changes in cation contents of stria vascularis with ouabain and potassium-free perfusion. Hear Res 4:149–160.

    Article  PubMed  CAS  Google Scholar 

  • Marcus DC, Rokugo M, Ge XX, Thalmann R (1983) Response of cochlear potentials to presumed alterations of ionic conductance: endolymphatic perfusion of barium, valinomycin and nystatin. Hear Res 12:17–30.

    Article  PubMed  CAS  Google Scholar 

  • Marcus DC, Rokugo M, Thalmann R (1985) Effects of barium and ion substitutions in artificial blood on endocochlear potential. Hear Res 17:79–86.

    Article  PubMed  CAS  Google Scholar 

  • Marcus DC, Marcus NY, Greger R (1987) Sidedness of action of loop diuretics and ouabain on nonsensory cells of utricle: a micro-Ussing chamber for inner ear tissues. Hear Res 30:55–64.

    Article  PubMed  CAS  Google Scholar 

  • Marcus DC, Takeuchi S, Wangemann P (1992) Ca2+-activated nonselective cation channel in apical membrane of vestibular dark cells. Am J Physiol 262:C1423–C1429.

    PubMed  CAS  Google Scholar 

  • Marcus DC, Takueuchi S, Wangemann P (1993) Two types of chloride channel in the basolateral membrane of vestibular dark cell epithelium. Hear Res 69:124–132.

    Article  PubMed  CAS  Google Scholar 

  • Marcus DC, Liu J, Shiga N, Wangemann P (1994) N-Ethylmaleimide stimulates and inhibits ion transport in vestibular dark cells of gerbil. Audit Neurosci 1:101–109.

    CAS  Google Scholar 

  • Marcus DC, Liu J, Wangemann P (1994) Transepithelial voltage and resistance of vestibular dark cell epithelium from the gerbil ampulla. Hear Res 73:101–308.

    Article  PubMed  CAS  Google Scholar 

  • Martin AR, Fuchs PA (1992) The dependence of calcium-activated potassium currents on membrane potential. Proc R Soc Lond B 250:71–76.

    Article  CAS  Google Scholar 

  • McGuirt JP, Schulte BA (1994) Distribution of immunoreactive α and β subunit isoforms of Na+, K+ ATPase in the gerbil inner ear. J Histochem Cytochem 42:843–853.

    Article  Google Scholar 

  • McLaren GM, Quirk WS, Laurikainen E, Coleman JKM, Seidman MD, Dengerink HA, Nuttall AL, Miller JM, Wright JW (1993) Substance P increases cochlear blood flow without changing cochlear electrophysiology in rats. Hear Res 71:183–189.

    Article  Google Scholar 

  • Melichar I, Syka J (1987) Electrophysiological measurements of the stria vascularis potentials in vivo. Hear Res 25:35–43.

    Article  PubMed  CAS  Google Scholar 

  • Meyer zum Gottesberg A, Lamprecht J (1989) Localization of the atrial natriuretic peptide binding sites in the inner ear tissue—possibly an additional regulating system. Acta Otolaryngol (Stockh) Suppl 468:53–57.

    Article  Google Scholar 

  • Milner RE, Baksh S, Shemanko C, Carpenter MR, Smillie L, Vance JE, Opas M, Michalak M (1991) Calretinin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem 266:7155–7165.

    PubMed  CAS  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharm Rev 43:109–42.

    PubMed  CAS  Google Scholar 

  • Morimoto RI (1993) Cells in strses: transcriptional activation of heat shock genes. Science 259:1409–1410.

    Article  PubMed  CAS  Google Scholar 

  • Murray SA, Plummer HK III, Leonard EE Jr, Deshmukh P (1993) Regulation of the 12-O-tetradecanoyl-phorbol-l3-acetate-induced inhibition of intercellular communication. Anat Rec 235:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Myers MW, Quirk WS, Rizk SS, Miller JM, Altschuler RA (1992) Expression of the major mammalian stress protein in the rat cochlea following transient ischemia. Laryngoscope 102:981–987.

    Article  PubMed  CAS  Google Scholar 

  • Nairn AC, Hemmings HC, Greengard P (1985) Protein kinases in the brain. Annu Rev Biochem 54:931–976.

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa K, Spicer SS, Schulte BA (1995) Postnatal expression of the facilitated glucose transporter, GLUTS, in gerbil outer hair cells. Hear Res 82:93–99.

    Article  PubMed  CAS  Google Scholar 

  • Niedzielski AS, Schacht J (1991) Phospholipid metabolism in the cochlea: differences between base and apex. Hear Res 57:107–112.

    Article  PubMed  CAS  Google Scholar 

  • Niedzielski AS, Schacht J (1992) P2 purinoceptors stimulate inositol phosphate release in the organ of Corti. Neuroreport 3:273–275.

    Article  PubMed  CAS  Google Scholar 

  • Niedzielski AS, Ono T, Schacht J (1992) Cholinergic regulation of the phosphoi-nositide second messenger system in the organ of Corti. Hear Res 59:250–254.

    Article  PubMed  CAS  Google Scholar 

  • Nilles R, Järlebark L, Zenner HP, Heilbronn E (1994) ATP-induced cytoplasmic [Ca2+] increases in isolated cochlear outer hair cells. Involved receptor and channel mechanisms. Hear Res 73:27–34.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1992) Signal transduction: crosstalk. Trends Biochem Sci 17:367.

    Article  Google Scholar 

  • Oesterle EC, Dallos P (1989) Intracellular recordings from supporting cells in the guinea-pig cochlea: AC potentials. J Acoust Soc Am 86:1013–1032.

    Article  PubMed  CAS  Google Scholar 

  • Oesterle EC, Dallos P (1990) Intracellular recordings from supporting cells in the guinea-pig cochlea: DC potentials. J Neurophysiol 64:617–636.

    PubMed  CAS  Google Scholar 

  • Offner FF (1991) Ion flow through membranes and the resting potential of cells. Membr Biol 123:171–182.

    Article  CAS  Google Scholar 

  • Offner FF, Dallos P, Cheatham MA (1987) Positive endocochlear potential: mechanism of production by marginal cells of stria vascularis. Hear Res 29:117–124.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Schacht J (1993) Receptor-mediated release of inositol phosphates in the cochlear and vestibular sensory epithelia of the rat. Hear Res 69:207–214.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Schacht J (1994) G-proteins coupled to phosphoinositide hydrolysis in the cochlear and vestibular epithelia of the rat are insensitive to cholera and pertussis toxins. Hear Res 74:197–203.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Schacht J (1995) Pty purinergic receptors coupled to phosphoinositide hydrolysis in tissues of the cochlear lateral wall. Neuroreport 6:1538–1540.

    Article  PubMed  CAS  Google Scholar 

  • Ohisén KA, Baldwin DL, Nuttall AL, Miller JM (1991) Influence of topically applied adrenergic agents on cochlear blood flow. Circ Res 69:509–518.

    Article  Google Scholar 

  • Ohnishi S, Hara M, Inoue M, Yamashita T, Kumazawa T, Minato A, Inagaki C (1992) Delayed shortening and shrinkage of cochlear outer hair cells. Am J Physiol 263:C1088–1095.

    PubMed  CAS  Google Scholar 

  • Ohyama K, Salt AN, Thalmann R (1988) Volume flow rate of perilymph in the guinea-pig cochlea. Hear Res 35:119–129.

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Schacht J (1987) Effect of cholinergic agents on phospholipid metabolism in the guinea pig cochlea. Audiol Jpn 30:607–608.

    Article  Google Scholar 

  • Ono T, Schacht J (1989) Acoustic stimulation increases phosphoinositide breakdown in the guinea pig cochlea. Neurochem Int 14:327–330.

    Article  PubMed  CAS  Google Scholar 

  • Orsulakova A, Stockhorst E, Schacht J (1976) Effect of neomycin on phosphoinositide labeling and calcium binding in guinea pig inner ear tissues in vivo and in vitro. J Neurochem 26:285–290.

    Article  PubMed  CAS  Google Scholar 

  • Petersen KU, Reuss L (1983) Cyclic AMP-induced chloride permeability in the apical membrane of Necturus gallbladder epithelium. J Gen Physiol 81:705–729.

    Article  PubMed  CAS  Google Scholar 

  • Pierson MG, Gray BH (1982) Superoxide dismutase activity in the cochlea. Hear Res 6:141–152.

    CAS  Google Scholar 

  • Pitovski DZ, Drescher MJ, Drescher DG (1993) High affinity aldosterone binding sites (type I receptors) in the mammalian inner ear. Hear Res 69:10–14.

    Article  PubMed  CAS  Google Scholar 

  • Pitovski DZ, Drescher MJ, Kerr Tp, Drescher DG (1993) Aldosterone mediates an increase in [3H]ouabain binding at Na+, K+ATPase sites in the mammalian inner ear. Brain Res 601:273–278.

    Article  PubMed  CAS  Google Scholar 

  • Plinkert PK, Plinkert B, Zenner HP (1992) Carbohydrates in the cell surface of hair cells from the guinea pig cochlea. Eur Arch Otorhinolaryngol 249:67–73.

    Article  PubMed  CAS  Google Scholar 

  • Pou AM, Fallon M, Winbery S, Bobbin RP (1991) Lowering extracellular calcium decreases the length of isolated outer hair cells. Hear Res 52:305–311.

    Article  PubMed  CAS  Google Scholar 

  • Prazma J, Rodgers GK, Pillsbury HC (1983) Cochlear blood flow: effect of noise. Arch Otolaryngol 109:611–615.

    Article  PubMed  CAS  Google Scholar 

  • Ptok M, Nair TS, Altschuler RA, Schacht J, Carey TE (1991) Monoclonal antibodies to inner ear antigens: II. Antigens expressed in sensory cell stereocilia. Hear Res 57:79–90.

    Article  PubMed  CAS  Google Scholar 

  • Pujol R, Puel J-L, Gervais d’Aldin C, Eybalin M (1993) Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngol 113:330–334.

    Article  PubMed  CAS  Google Scholar 

  • Quirk WS, Wright JW, Dengerink HA, Miller JM (1988) Angiotensin II-induced changes in cochlear blood flow and blood pressure in normotensive and spontaneously hypertensive rats. Hear Res 32:129–136.

    Article  Google Scholar 

  • Quirk WS, Avinash G, Nuttall AL, Miller JM (1992) The influence of loud sound on red blood cell velocity and blood vessel diameter in the cochlea. Hear Res 63:102–107.

    Article  PubMed  CAS  Google Scholar 

  • Raphael Y, Volk T, Crossin KL, Edelman GM, Geiger B (1988) The modulation of cell adhesion molecule expression and intercellular junction formation in the developing avia inner ear. Dev Biol 128:222–235.

    Article  PubMed  CAS  Google Scholar 

  • Rarey KE, Luttge WG (1989) Presence of type I and type II/IB receptors for adrenocorticosteroid hormones in the inner ear. Hear Res 41:217–222.

    Article  PubMed  CAS  Google Scholar 

  • Rarey KE, Curtis LM, ten Cate WJ-F (1993) Tissue specific levels of glucocorticoid receptor within the rat inner ear. Hear Res 64:205–210.

    Article  PubMed  CAS  Google Scholar 

  • Reivich M (1974) Blood flow metabolism couple in brain. Res Publ Assoc Res Nery Ment Disorders 53:125–140.

    CAS  Google Scholar 

  • Reuss L (1987) Cyclic AMP inhibits Cl- /HCO3 - exchange at the apical membrane of Necturus gallbladder epithelium. J Gen Physiol 90:173–196.

    Article  PubMed  CAS  Google Scholar 

  • Richardson GP, Bartolami S, Russell IJ (1990) Identification of α 275kD protein associated with the apical surfaces of sensory hair cells in the avian inner ear. J Cell Biol 110:1055–1066.

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747.

    Article  PubMed  CAS  Google Scholar 

  • Rossier BC, Geering K, Kraehenbuhl JP (1987) Regulation of the sodium pump: how and why? Trends Biol Sci 12:483–487.

    Article  CAS  Google Scholar 

  • Rossier MF, Putney JW (1991) The identity of the calcium-storing, inositol 1,4,5-trisphosphate-sensitive organelle in non-muscle cells: calciosome, endoplasmic reticulum... or both? Trends Neurosci 14:310–314.

    Article  PubMed  CAS  Google Scholar 

  • Ryan AF, Schwartz IR (1984) Preferential glutamine uptake by cochlear hair cells: implications for the afferent transmitter. Brain Res 290:376–379.

    Article  PubMed  CAS  Google Scholar 

  • Ryan AF, Woolf NK, Catanzaro A, Braverman S, Sharp FR (1985) Deoxyglucose uptake patterns in the auditory system: metabolic response to sound stimulation in the adult and neonate. In: Drescher D (ed) Auditory Biochemistry. Springfield, IL: Charles C. Thomas, pp. 401–421.

    Google Scholar 

  • Rybak LP, Whitworth C (1986) Comparative ototoxicity of foresemide and piretanide. Acta Otolaryngol (Stockh) 101:59–65.

    Article  CAS  Google Scholar 

  • Rybak LP, Green TP, Juhn SK, Morizono T (1984) Probenecid reduces cochlear effects and perilymph penetration of furosemide in chinchilla. J Pharmacol Exp Ther 230:706–709.

    PubMed  CAS  Google Scholar 

  • Sakagami M, Fukazawa K, Matsunaga T, Fujita H, Mori N, Takumi T, Ohkubo H, Nakanishi S (1991) Cellular localization of rat Isk protein in the stria vascularis by immunohistochemical observation. Hear Res 56:168–172.

    Article  PubMed  CAS  Google Scholar 

  • Salt AN, Konishi T (1979) Effects of noise on cochlear potentials and endolymph potassium concentration recorded with potassium-selective electrodes. Hear Res 1:343–363.

    Article  PubMed  CAS  Google Scholar 

  • Salt AN, Ohyama K (1993) Accumulation of potassium in scala vestibuli perilymph of the mammalian cochlea. Ann Otol Rhinol Laryngol 102:64–70.

    PubMed  CAS  Google Scholar 

  • Salt AN, Stopp PE (1979) The effect of raising the scala tympani potassium concentration on the tone-induced cochlear responses of the guinea pig. Exp Brain Res 36:87–98.

    Article  PubMed  CAS  Google Scholar 

  • Salt AN, Thalmann R (1988a) Rate of longitudinal flow of cochlear endolymph. In: Nadol JB Jr (ed) Second International Symposium on Meniere’s Disease. Amsterdam: Kugler & Ghedini, pp. 69–73.

    Google Scholar 

  • Salt AN, Thalmann R (1988b) Cochlear fluid dynamics. In: Jahn AF, Santos-Sacchi J (eds) Physiology of the Ear. New York: Raven Press, pp. 341–357.

    Google Scholar 

  • Salt AN, Thalmann R, Marcus DC, Bohne BA (1986) Direct measurement of longitudinal endolymph flow rate in the guinea pig ochlea. Hear Res 23:141–151.

    Article  PubMed  CAS  Google Scholar 

  • Salt AN, Melichar I, Thalmann R (1978) Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope 97:984–991.

    Google Scholar 

  • Salt AN, Inamura N, Thalmann R, Vora A (1989) Calcium gradients in inner ear endolymph. Am J Otolaryngol 10:371–375.

    Article  PubMed  CAS  Google Scholar 

  • Salt AN, Ohyama K, Thalmann R (1991a) Radial communication between the perilymphatic scalae of the cochlea. I: Estimation by tracer perfusion. Hear Res 56:29–36.

    Article  PubMed  CAS  Google Scholar 

  • Salt AN, Ohyama K, Thalmann R (1991b) Radial communication between the perilymphatic scalae of the cochlea. II: Estimation by bolus injection of tracer into the sealed cochlea. Hear Res 56:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Santi PA, Anderson CB (1987) A newly identified surface coat on cochlear hair cells. Hear Res 27:47–65.

    Article  PubMed  CAS  Google Scholar 

  • Santi PA, Larson JT, Furcht LT, Economu TS (1989) Immunohistochemical localization of fibronectin in the chinchilla cochlea. Hear Res 39:91–102.

    Article  PubMed  CAS  Google Scholar 

  • Santos-Sacchi J (1986) Dye coupling in the organ of Corti. Cell Tiss Res 245:525–529.

    CAS  Google Scholar 

  • Schacht J (1974) Interaction of neomycin with phosphoinositide metabolism in guinea pig inner ear and brain tissues. Ann Otol 83:613–618.

    CAS  Google Scholar 

  • Schacht J (1985) Hormonal regulation of adenylate cyclase in the stria vascularis of the mouse. Hear Res 20:9–13.

    Article  PubMed  CAS  Google Scholar 

  • Schacht J, Canlon B (1985) Noise-ineduced changes of cochlear energy metabolism. In: Drescher D (ed) Auditory Biochemistry. Springfield, IL: Charles C. Thomas, pp. 389–400.

    Google Scholar 

  • Schacht J, Canlon B (1988) Biochemistry of the inner ear. In: Alberti PW, Ruben RJ (eds) Otologic Medicine and Surgery. New York: Churchill Livingstone, pp. 151–178.

    Google Scholar 

  • Schacht J, Zenner HP (1987) Evidence that phosphoinositides mediate motility in cochlear outer hair cells. Hear Res 31:155–159.

    Article  PubMed  CAS  Google Scholar 

  • Scheibe F, Haupt H, Rothe E, Hache U (1981) Zur Glukose-, Pyruvat-und Laktatkonzentration von Perilymphe, Blut and Liquor cerebrospinalis unbelasteter and schallbelasteter Meerschweinchen in Athylurethannarkose. Arch Otorhinolaryngol 233:89–97.

    Article  PubMed  CAS  Google Scholar 

  • Scheibe F, Haupt H, Ludwig C (1992) Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure. Hear Res. 63:19–25.

    Article  PubMed  CAS  Google Scholar 

  • Schmidley JW, Dadson J, Iyer RS, Salomon RG (1992) Brain tissue injury and blood-brain barrier opening induced by injection of LGE2 or PGE2. Prostagl Leukot Essent Fatty Acids 47:105–110.

    Article  CAS  Google Scholar 

  • Schulte BA (1993) Immunohistochemical localization of intracellular Ca2+ATPase in outer hair cells, neurons and fibrocytes in the adult and developing inner ear. Hear Res 65:262–273.

    Article  PubMed  CAS  Google Scholar 

  • Schulte BA, Adams JC (1989) Distribution of immunoreactive Na+, K+-ATPase in gerbil cochlea. J Histochem Cytochem 37:127–134.

    Article  PubMed  CAS  Google Scholar 

  • Schulte BA, Steel KP (1994) Expression of α and ß subunit isoforms of Na+,K+ATPase in the mouse inner ear and changes with mutations at the Wv or Sld loci. Hear Res 78:65–76.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz IR, Ryan AF (1983) Differential labeling of sensory cell and neuronal populations in the guinea pig organ of Corti following amino acid incubations. Hear Res 9:185–200.

    Article  PubMed  CAS  Google Scholar 

  • Sellick PM, Johnstone BM (1975) Production and role of inner ear fluid. Prog Neurobiol 5:337–362.

    Article  PubMed  CAS  Google Scholar 

  • Shiga N, Wangemann P (1995) Ion selectivity of volume regulatory mechanisms presnt during a hyposmotic challenge in vestibular dark cells. Biochim Biophys Acta 1240:48–54.

    Article  PubMed  Google Scholar 

  • Shigemoto T, Ohmori H (1990) Muscarinic agonists and ATP increase the intracellular Ca2+ concentration in chick cochlear hair cells. Hear Res 61:35–46.

    Google Scholar 

  • Shindo M, Miyamoto M, Abe N, Shida S, Murakami Y, Imai Y (1992) Dependence of endocochlear potential on basolateral Na+and Cl-concentration: a study using vascular and perilymph perfusion. Jpn J Physiol 42:617–630.

    Article  PubMed  CAS  Google Scholar 

  • Sillman JS, Masta RI, LaRuere MJ, Nuttall AL, Miller JM (1989) Electrically stimulated increases in cochlear blood flow: II. Evidence for neural mediation. Otolaryngol Head Neck Surg 101:362–374.

    PubMed  CAS  Google Scholar 

  • Skellett RA, Crist JR, Fallon M, Bobbin RP (1995) Caffeine-induced shortening of isolated outer hair cells: an osmotic mechanism of action. Hear Res 87:41–48.

    Article  PubMed  CAS  Google Scholar 

  • Slepecky NB, Savage JE (1994) Expression of actin isoforms in the guinea pig organ of Corti: muscle isoforms are not detected. Hear Res 73:16–26.

    Article  PubMed  CAS  Google Scholar 

  • Slepecky NB, Ulfendahl M (1993) Evidence for calcium-binding proteins and calcium-dependent regulatory proteins in sensory cells of the organ of Corti. Hear Res 70:73–84.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L (1977) Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29:13–26.

    Article  PubMed  CAS  Google Scholar 

  • Sokrab TE, Johansson BB, Tengvar C, Kalimo H, Olsson Y (1988) Adrenaline-induced hypertension: morphological consequences of the blood-brain barrier disturbance. Acta Neurol Scand 77:387–396.

    Article  PubMed  CAS  Google Scholar 

  • Somlyo AP (1984) Cellular site of calcium regulation. Nature 309:516–517.

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Schulte BA, Adams JC (1990) Immunolocalization of Na+, K +-ATPase and carbonic anhydrase in the gerbil’s vestibular system. Hear Res 43:205–217.

    Article  PubMed  CAS  Google Scholar 

  • Spoendlin H, Lichtensteiger W (1966) The adrenergic innervation of the labyrinth. Acta Otolaryngol 61:423–434.

    Article  PubMed  CAS  Google Scholar 

  • Sterkers O, Saumon G, Tran Ba Huy P, Amiel C (1982) K+, Cl-, and H2O entry in endolymph, perilymph, and cerebrospinal fluid of the rat. Am J Physiol 243:F173–F180.

    PubMed  CAS  Google Scholar 

  • Sterkers O, Ferrary E, Amiel C (1984) Inter-and intracompartmental osmotic gradients within the rat cochlea. Am J Physiol 247:F602–F606.

    PubMed  CAS  Google Scholar 

  • Sterkers O, Saumon G, Tran Ba Huy P, Ferrary E, Amiel C (1984) Electrochemical heterogeneity of the cochlear endolymph: effect of acetazolamide. Am J Physiol 246:F47–F53.

    PubMed  CAS  Google Scholar 

  • Sterkers O, Ferrary E, Saumon G, Amiel C (1987) Na and nonelectrolyte entry into inner ear fluids of the rat. Am J Physiol 253:F50–F58.

    PubMed  CAS  Google Scholar 

  • Sunose H, Ikeda K, Saito Y, Nishiyama A, Takasaka T (1992) Membrane potential measurements in isolated outer hair cells of the guinea pig cochlea using conventional microelectrodes. Hear Res 62:237–244.

    Article  PubMed  CAS  Google Scholar 

  • Sunose H, Ikeda K, Saito Y, Nishiyama A, Takasaka T (1993) Nonselective cation and Cl channels in luminal membrane of the marginal cell. Am J Physiol Cell Physiol 265:C72–C78.

    CAS  Google Scholar 

  • Sunose H, Ikeda K, Suzuki M, Takasaka T (1994) Voltage-dependent small K channel in luminal membrane of marginal cells of stria vascularis dissected from guinea pig cochlea. Assoc Res Otolaryngol 17:133.

    Google Scholar 

  • Sunose H, Liu J, Marcus DC (1995) Elevated intracellular cAMP activates transepithelial potassium secretion and apical slowly activating potassium channel in striai marginal cells and in vestibular dark cells. Proc Sendai Symp 5 (in press).

    Google Scholar 

  • Sziklai I, Kiss JG, Ribari O (1986) Inhibition of myosin light-chain kinase activity in the organ of Corti by 0.3–5 kilodalton substances of the otosclerotic perilymph. Arch Otorhinolaryngol 243:229–232.

    Article  PubMed  CAS  Google Scholar 

  • Sziklai I, Ferrary E, Horner KC, Sterkers O, Amiel C (1992) Time-related alteration of endolymph composition in an experimental model of endolymphatic hydrops. Laryngoscope 102:431–438.

    Article  PubMed  CAS  Google Scholar 

  • Tachibana M, Wilcox E, Yokotani N, Schneider M, Fex J (1992) Selective amplification and partial sequencing of cDNAs encoding G protein a subunits from cochlear tissues. Hear Res 62:82–88.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Kimura RS (1970) The ultrastructure of the spiral ligament in the rhesus monkey. Acta Otolaryngol 69:46–60.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi S, Marcus DC, Wangemann P (1992) Ca2+-activated nonselective cation, maxi K+ and Cl-channels in apical membrane of marginal cells of stria vascularis. Hear Res 61:86–96.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi S, Ando M, Kozakura K, Saito H, Irimajiri A (1995) Ion channels in basolateral membrane of marginal cells dissociated from gerbil stria vascularis. Hear Res 83:89–100.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Salt AN (1994) Cochlear function is disturbed by micromolar increases of endolymph calcium. Assoc Res Otolaryngol 17:90.

    Google Scholar 

  • Tasaki I, Spyropoulos CS (1959) Stria vascularis as source of endocochlear potential. J Neurophysiol 22:149–155.

    PubMed  CAS  Google Scholar 

  • ten Cate WJ, Rarey KE (1991) Plasma membrane modulation of ampullar dark cells by corticosteroids. Arch Otolaryngol Head Neck Surg 117:96–99.

    Article  PubMed  Google Scholar 

  • ten Cate WJ, Curtis LM, Rarey KE (1992) Immunochemical detection of glucocor-ticoid receptors within rat cochlear and vestibular tissues. Hear Res 60:199–204.

    Article  PubMed  Google Scholar 

  • Thalmann I, Thalmann R (1978) Reevaluation of adenylate cyclase in Reissner’s membrane. Arch Otorhinolaryngol 221:311–312.

    Article  PubMed  CAS  Google Scholar 

  • Thalmann I, Rosenthal Hl, Moore BW, Thalmann R (1980) Organ of Corti-specific polypeptides: OCP-I and OCP-II. Arch Otolaryngol 226:123–128.

    CAS  Google Scholar 

  • Thalmann I, Comegys TH, Liu SZ, Ito Z, Thalmann R (1992) Protein profiles of perilymph and endolymph of the guinea pig. Hear Res 63:37–42.

    Article  PubMed  CAS  Google Scholar 

  • Thalmann I, Suzuki H, McCourt DW, Comegys TH, Thalmann R (1993) Partial amino acid sequences of organ of Corti proteins OCP1 and OCP2: a progress report. Hear Res 64:191–298.

    Article  PubMed  CAS  Google Scholar 

  • Thalmann R (1971) Metabolic features of auditory and vestibular systems. Laryngo scope 81:1245–1260.

    Article  Google Scholar 

  • Thalmann R, Kusakari J, Miyoshi T (1973) Dysfunctions of energy releasing and consuming processes of the cochlea. Laryngoscope 83:1690–1712.

    Article  PubMed  CAS  Google Scholar 

  • Thalmann RR (1976) Quantitative biochemical techniques for studying normal and noise-damaged ears. In: Henderson D, Hamernik RP, Dosanjh DS, Miller JH (eds) Effects of Noise on Hearing. New York: Raven Press, pp. 129–154.

    Google Scholar 

  • Thalmann R, Marcus NY, Thalmann I (1978) Adenylate energy charge, energy status, and phosphorylation state of stria vascularis under metabolic stress. Laryngoscope 88:1985–1998.

    Article  PubMed  CAS  Google Scholar 

  • Thalmann R, Paloheimo S, Thalmann I (1979) Distribution of cyclic nucleotides in the organ of Corti. Acta Otolaryngol 87:375–380.

    Article  PubMed  CAS  Google Scholar 

  • Thalmann R, Salt AN, DeMott J (1988) Endolymph volume regulation. Possible mechanisms. In: Nadol JB Jr (ed) Second Symposium on Meniere’s Disease. Amsterdam: Kugler & Ghedini, pp. 55–60.

    Google Scholar 

  • Thompson AM, Neely JG (1992) Induction of heat shock protein in interdental cells by hyperthermia. Otolaryngol Head Neck Surg 107:769–774.

    PubMed  CAS  Google Scholar 

  • Thorne PR, Nuttall AL (1987) Laser Doppler measurements of cochlear blood flow during loud sound exposure in the guinea pig. Hear Res 27:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Thorne PR, Nuttall AL (1989) Alterations in oxygenation of cochlear endolymph during loud sound exposure. Acta Otolaryngol 107:71–79.

    Article  PubMed  CAS  Google Scholar 

  • Vogh BP, Maren TH (1975) Sodium, chloride, and bicarbonate movement from plasma to cerebrospinal fluid in cats. Am J Physiol 228:673–683.

    PubMed  CAS  Google Scholar 

  • Volpe P, Krause KH, Hashimoto S, Zorzato F, Pozzan T, Meldolesi J, Lew DP (1988) “Calciosome,” a cytoplasmic organelle: the inositol 1,4,5-triphosphatesensitive calcium store of nonmuscle cells? Proc Natl Acad Sci USA 85:1091–1095.

    Article  PubMed  CAS  Google Scholar 

  • von Békésy G (1950) DC potentials and energy balance of the cochlear partition. J Acoust Soc Am 22:576–582.

    Google Scholar 

  • Wada J, Kambayashi J, Marus DC, Thalmann R (1979) Vascular perfusion of the cochlea: effect of potassium-free and rubidium-substituted media. Arch Otorhinolaryngol 225:79–81.

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Schacht T (1990) Insulin stimulates protein synthesis and phospholipid signaling systems but does not regulate glucose uptake in the inner ear. Hear Res 47:53–62.

    Article  PubMed  CAS  Google Scholar 

  • Wangemann P, Greger R (1990) Piretanide inhibits the Na+2Cl-K+ carrier in the thick ascending limb of the loop of Henle and reduces the metabolic fuel requirements of this nephron segment. In: Puschett JB, Greenberg A (eds) Diuretics III: Chemistry, Pharmacology, and Clinical Applications. New York: Elsevier, pp. 220–224.

    Google Scholar 

  • Wangemann P, Marcus DC (1989) Membrane potential measurements of transitional cells from the crista ampullaris of the gerbil. Effects of barium, quinidine, quinine, tetraethylammonium, cesium, ammonium, thallium and ouabain. Pflügers Arch 414:656–662.

    Article  PubMed  CAS  Google Scholar 

  • Wangemann P, Marcus DC (1990) K+-induced swelling of vestibular dark cells is dependent on Na+ and Cl-and inhibited by piretanide. Pflügers Arch 416:262–269.

    Article  PubMed  CAS  Google Scholar 

  • Wangemann P, Shiga N (1994a) Cell volume control in vestibular dark cells during and after a hyposmotic challenge. Am J Physiol Cell Physiol 226:C1046–C1060.

    Google Scholar 

  • Wangemann P, Shiga N (1994b) Ba2+ and amiloride uncover or induce a pH-sensitive and a Na or non-selective cation conductance in transitional cells of the inner ear. Pflügers Arch 426:258–266.

    Article  PubMed  CAS  Google Scholar 

  • Wangemann P, Shiga N, Marcus DC (1993) The Na+/K+ exchanger in transitional cells of the inner ear. Hear Res 69:107–114.

    Article  PubMed  CAS  Google Scholar 

  • Wangemann P, Liu J, Marcus DC (1995) Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hear Res 84:19–29.

    Article  PubMed  CAS  Google Scholar 

  • Wangemann P, Liu J, Shiga N (1995) The pH-sensitivity of transepithelial K transport in vestibular dark cells. J Membr Biol 147 255–262.

    PubMed  CAS  Google Scholar 

  • Wangemann P (1995) Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hear Res 90:149–157.

    Article  PubMed  CAS  Google Scholar 

  • Wangemann P, Liu J, Shen Z, Shipley A, Marcus DC (1995) Hypo-osmotic challenge stimulates transepithelial K+ secretion and activates apical Isk channel in vestibular dark cells. J Membr Biol 147:263–273.

    PubMed  CAS  Google Scholar 

  • Whitlon DC (1993) E-cadherin in the mature and develping organ of Corti of the mouse. J Neurocytol 22:1030–1038.

    Article  PubMed  CAS  Google Scholar 

  • Williams SE, Zenner HP, Schacht J (1987) Three molecular steps of aminoglycoside ototoxicity demonstrated in outer hair cells. Hear Res 30:11–18.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Amano H, Harada N, Su ZL, Kumazawa T, Tsunoda Y, Tashiro Y (1990) Calcium distribution and mobilization in single cochlear hair cells. Acta Otolaryngol 109:256–262.

    Article  PubMed  CAS  Google Scholar 

  • Ylikoski J, Pirvola U, Moshnyakov M, Palgi J, Arumae U, Saarma M (1993) Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear Res 65:69–78.

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara T, Igarashi M, Usami S, Kanda T (1987) Cytochemical studies of Ca2+-ATPase activity in the vestibular epithelia of the guinea pig. Arch Otorhinolaryngol 243:417–423.

    Article  PubMed  CAS  Google Scholar 

  • Zajic G, Anniko M, Schacht J (1983) Cellular localization of adenylate cyclase in the developing and mature inner ear of the mouse. Hear Res 10:249–261.

    Article  PubMed  CAS  Google Scholar 

  • Zajic G, Nair TS, Ptok M, Van Waes C, Altschuler RA, Schacht J, Carey TE (1991) Monoclonal antibodies to inner ear antigens: I Antigens expressed by supporting cells of the guinea pig cochlea. Hear Res 52:59–71.

    Article  PubMed  CAS  Google Scholar 

  • Zenner HP, Zimmerman U, Schmitt U (1985) Reversible contraction of isolated mammalian cochlear hair cells. Hear Res 22:83–90.

    Article  Google Scholar 

  • Zidanic M, Brownell WE (1990) Fine structure of the intracochlear potential field. I. The silent current. Biophys J 57:1253–1268.

    Article  PubMed  CAS  Google Scholar 

  • Zwislocki JJ, Slepecky NB, Cefaratti LK, Smith RL (1992) Ionic coupling among cells in the organ of Corti. Hear Res 57:175–194.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wangemann, P., Schacht, J. (1996). Homeostatic Mechanisms in the Cochlea. In: Dallos, P., Popper, A.N., Fay, R.R. (eds) The Cochlea. Springer Handbook of Auditory Research, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0757-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0757-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6891-8

  • Online ISBN: 978-1-4612-0757-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics