Skip to main content

Impact of Physiological Determinants: Flow, Binding, Transporters and Enzymes on Organ and Total Body Clearances

  • Chapter
  • First Online:
Enzyme- and Transporter-Based Drug-Drug Interactions

Abstract

Physiologically based pharmacokinetic (PBPK) models of the intestine, liver, and kidney were developed to examine the influence of transporters as well as enzymes on the area under the curve and clearances of drugs and metabolites. Whole body PBPK models were then developed, with the kidney and intestine or the kidney and liver as the organs for excretion and metabolism. From these PBPK models, the influence of flow, binding, transporters, and enzymes and the presence of competing pathways and competing organs on the areas of the drug and metabolite and total body clearance were defined. These relationships on the drug and metabolite AUC data are extremely useful for understanding the DDI mechanism, transport or metabolism, or both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Zahra TN and Pang KS (2000) Effect of zonal transport and metabolism on hepatic removal: enalapril hydrolysis in zonal, isolated rat hepatocytes in vitro and correlation with perfusion data. Drug Metab Dispos 28:807–813.

    CAS  PubMed  Google Scholar 

  • Abu-Zahra TN, Wolkoff AW, Kim RB, and Pang KS (2000) Uptake of enalapril and expression of organic anion transporting polypeptide 1 in zonal, isolated rat hepatocytes. Drug Metab Dispos 28:801–806.

    CAS  PubMed  Google Scholar 

  • Addis T (1917) Ratio between the urea content of the urine and blood after administration of large quantities of urea. J Urol 1:263–287.

    CAS  Google Scholar 

  • Ambudkar SV, Kim W-W, Booth-Genthe C (2008) Relationship between drugs and function activity of various mammalian P-glycoproteins (ABCB1). Mini-Rev Med Chem 8:193–200.

    Article  PubMed  Google Scholar 

  • Andersen ME, Brinbaum IS, Barton HA, and Eklund CR (1997) Regional hepatic CYP1A1 and CYP1A2 induction with 2,3,7,8-tetrachlorodibenzo-p-dioxin evaluated with a multicompartment geometric model of hepatic zonation. Toxicol Appl Pharmacol 144:145–155.

    Article  CAS  PubMed  Google Scholar 

  • Andersen ME, Clewell 3rd HJ, Gargas ML, Smith FA, and Reitz RH (1987) Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol Appl Pharmacol 87:185–205.

    Article  Google Scholar 

  • Badhan R, Penny J, Galetin A, and Houston JB (2009) Methodology for development of a physio-logical model incorporating CYP3A and P-glycoprotein for the prediction of intestinal drug absorption. J Pharm Sci 98:2180–2197.

    Google Scholar 

  • Backman JT, Kyrklund C, Neuvonen M, and Neuvonen PJ (2002) Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin Pharmacol Ther 7:685–691.

    Article  CAS  Google Scholar 

  • Bekersky I, Popick AC, and Colburn WA (1984) Influence of protein binding and metabolic interconversion on the disposition of sulfisoxazole and its N4-acetyl metabolite by the isolated perfused rat kidney. Drug Metab Dispos 12:607–613.

    CAS  PubMed  Google Scholar 

  • Benowitz N Forsyth FP, Melmon KL, and Rowland M (1974) Lidocaine disposition kinetics in monkey and man. I. Prediction by a perfusion model. Clin Pharmacol Ther 16:87–98.

    CAS  PubMed  Google Scholar 

  • Boffito M, Back DJ, Blaschke TF, Rowland M, Bertz RJ, Gerber JG, and Miller V (2003) Protein binding in antiretroviral therapies. AIDS Res Hum Retroviruses 19:825–835.

    Article  CAS  PubMed  Google Scholar 

  • Boom SP, Meyer I, Wouterse A, and Russel FG (1998) A physiologically based kidney model for the renal clearance of ranitidine and the interaction with cimetidine and probenecid in the dog. Biopharm Drug Dispos 19:199–208.

    Article  CAS  PubMed  Google Scholar 

  • Boom SP, Moons MM, and Russel FG (1994) Renal tubular transport of cimetidine in the isolated perfused kidney of the rat. Drug Metab Dispos 22:148–153.

    CAS  PubMed  Google Scholar 

  • Brewer BD, Clement SF, Lotz WS, Gronwall R (1990) A comparison of inulin, para-aminohippuric acid, and endogenous creatinine clearances as measures as renal function of neonatal foals. J Vet Intern Med 4:301–305.

    Article  CAS  PubMed  Google Scholar 

  • Brown HS, Galetin A, Halifax D, and Houston JB (2006) Prediction of in vivo drug-drug interactions from in vitro data factors affecting prototypic drug–drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Clin Pharmacokinet 45:1035–1050.

    Article  CAS  PubMed  Google Scholar 

  • Brown HS, Ito K, Galetin A and Houston JB (2005) Prediction of in vivo drug–drug interactions from in vitro data: impact of incorporating parallel pathways of drug elimination and inhibitor absorption rate constant. Br J Clin Pharmacol 60:508–518.

    Article  CAS  Google Scholar 

  • Chandra P and Brouwer KL (2004) The complexities of hepatic drug transport: current knowledge and emerging concepts. Pharm Res 21:719–735.

    Article  CAS  PubMed  Google Scholar 

  • Chiba M and Pang KS (1993) Effect of protein binding of 4-methylumbelliferyl sulfate desulfation kinetics in perfused rat liver. J Pharmacol Exp Ther 266:492–499.

    CAS  PubMed  Google Scholar 

  • Clewell HJ, Gentry PR, Gearhart JM, Allen BC, Andersen ME (2001) Comparison of cancer risk estimates for vinyl chloride using animal and human data with a PBPK model. Sci Total Environ 274:37–66.

    Article  CAS  PubMed  Google Scholar 

  • Coffey JJ, Bullock FJ, and Schoenemann PT (1971) Numerical solution of nonlinear pharmacokinetic equations: effects of plasma protein binding on drug distribution and elimination. J Pharm Sci 60:1623–1628.

    Article  CAS  PubMed  Google Scholar 

  • Cong D, Doherty M, and Pang KS (2000) A new physiologically-based segregated flow model to explain route-intestinal metabolism. Drug Metab Dispos 28:224–235.

    CAS  PubMed  Google Scholar 

  • Corley RA and McMartin KE (2005) Incorporation of therapeutic interventions in physiologically based pharmacokinetic modeling of human clinical case reports of accidental or intentional overdosing with ethylene glycol. Toxicol Sci 85:491–501.

    Article  CAS  PubMed  Google Scholar 

  • de Lannoy IAM and Pang KS (1987) Effect of diffusional barriers on drug and metabolite kinetics. Drug Metab Dispos 15:51–58.

    PubMed  Google Scholar 

  • de Lannoy IAM and Pang KS (1993) Combined recirculation of the rat liver and kidney: studies with enalapril and enalaprilat. J Pharmacokinet Biopharm 21:423–456.

    Article  PubMed  Google Scholar 

  • de Lannoy IAM, Barker BF 3rd and Pang KS (1993) Combined recirculation of the rat liver and kidney: studies with enalapril and enalaprilat. J Pharmacokinet Biopharm 21:423–456.

    Google Scholar 

  • de Lannoy IAM, Hirayama H, and Pang KS (1990) A physiological model for renal drug metabolism: enalapril esterolysis to enalaprilat in the isolated perfused rat kidney. J Pharmacokinet Biopharm 18:561–588.

    Article  PubMed  Google Scholar 

  • de Lannoy IAM, Nespeca R, and Pang KS (1989) Renal handling of enalapril and its metabolite, enalaprilat, in the isolated red blood cell-perfused rat kidney. J Pharmacol Exp Ther 251:1211–1222.

    PubMed  Google Scholar 

  • Dobrev ID, Anderson ME, and Yang YSH (2002) In silico toxicology: simulating interaction thresholds for human exposure to mixtures of trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. Environ Health Perspect 110:1031–1039.

    Article  CAS  PubMed  Google Scholar 

  • Eloranta JJ and Kullak-Ubllick GA (2005) Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochim Biophys 433:397–412.

    Article  CAS  Google Scholar 

  • Ercolani G, Grazi GL, Callivà R, Pierangeli F, Cescon M, Cavallari A, and Mazziotti A (2000) The lidocaine (MEGX) test as an index of hepatic function: its clinical usefulness in liver surgery. Surgery 127:464–471.

    Article  CAS  PubMed  Google Scholar 

  • Faybik P and Hetz H (2006) Plasma disappearance of indocyanine green. Transplant Proc 38:801–802.

    Article  CAS  PubMed  Google Scholar 

  • Geng W and Pang KS (1999) Differences in excretion of hippurate, as a metabolite of benzoate and as an administered species in the single pass isolated perfused rat kidney explained. J Pharmacol Exp Ther 288:597–606.

    CAS  PubMed  Google Scholar 

  • Gillette JR (1971) Factors affecting drug metabolism. Ann NY Acad Sci 179:43–66.

    Article  CAS  PubMed  Google Scholar 

  • Goresky CA (1964) Initial distribution and rate of uptake of sulfobromophthalein in the liver. Am J Physiol 207:13–26.

    CAS  PubMed  Google Scholar 

  • Goresky CA, Bach GC, and Nadeau BE (1973) On the uptake of materials by the intact liver. The transport and net removal of galactose. J Clin Invest 52:991–1009.

    Article  CAS  PubMed  Google Scholar 

  • Goresky CA, Bach GG, and Nadeau BE (1975) Red cell carriage of label. Its limiting effect on the exchange of materials in the liver. Circ Res 36:328–351.

    CAS  PubMed  Google Scholar 

  • Goresky CA, Schwab AJ, and Rose CJ (1988) Xenon handling by the liver: red cell capacity effect. Circ Res 63:767–778.

    CAS  PubMed  Google Scholar 

  • Goulden KJ, Dooley JM, Camfield PR, and Fraser AD (1987) Clinical valproate toxicity induced by acetylsalicylic acid. Neurology 37:1392–1394.

    CAS  PubMed  Google Scholar 

  • Gray MR and Tam YK (1987) The series-compartment model for hepatic elimination. Drug Metab Dispos 15:27–31.

    CAS  PubMed  Google Scholar 

  • Greenblatt DJ, Duhme DW, Koch-Weser J, and Smith TW (1973) Evaluation of digoxin bioavailability in single-dose studies. N Engl J Med 289:651–654.

    Google Scholar 

  • Gregus Z, Fekete T, Varga F, and Klaassen CD (1992) Availability of glycine and Coenzyme A limits glycine conjugation in vivo. Drug Metab Dispos 20:234–240.

    CAS  PubMed  Google Scholar 

  • Gumucio DL, Gumucio JJ, Wilson JAP, Cutter C, Krauss M, Caldwell R, and Chen E (1984) Albumin influences sulfobromophthalein transport by hepatocytes of each acinar zone. Am J Physiol 246:G86–G95.

    CAS  PubMed  Google Scholar 

  • Gumucio JJ, Miller DL, Krauss MD, and Cutter Zanollli C (1981) Transport of fluorescent compounds into hepatocytes and the resultant zonal labelling of the hepatic acinus in the rat. Gastroenterology 80:639–646.

    CAS  PubMed  Google Scholar 

  • Hagelberg NM, Nieminen TH, Saari TI, Neuvonen M, Neuvonen PJ, Laine K, and Olkkola KT (2009) Voriconazole drastically increases exposure to oral oxycodone. Eur J Clin Pharmacol 65:263–271.

    Article  CAS  PubMed  Google Scholar 

  • Hekman P and van Ginneken CA (1983) Simultaneous kinetic modelling of plasma levels and uriary excretion of salicyluric acid, and the influence of probenecid. Eur J Drug Metab Pharmacokinet 8:239–249.

    Article  CAS  PubMed  Google Scholar 

  • Hinderling PH (1984) Kinetics of partitioning and binding of digoxin and its analogues in the subcompartments of blood. J Pharm Sci 73:1042–1053.

    Article  CAS  PubMed  Google Scholar 

  • Hong SP, Choi DH, and Choi JS (2008) Effects of resveratrol on the pharmacokinetics of diltiazem and its major metabolite, desacetyldiltiazem, in rats. Cardiovasc Ther 26:269–275.

    Article  CAS  PubMed  Google Scholar 

  • Hynninen VV, Olkkola KT, Bertilsson L, Kurkinen K, Neuvonen PJ and Laine K (2008) Effect of terbinafine and voriconazole on the pharmacokinetics of the antidepressant venlafaxine. Clin Pharmacol Ther 83:342–348.

    Article  PubMed  Google Scholar 

  • Häcki W, Bircher J, and Presig R (1976) A new look at the plasma disappearance of sulfobromphthalein (BSP): correlation with the BSP transport maximum and the hepatic plasma flow in man. J Lab Clin Med 88:1019–1031.

    PubMed  Google Scholar 

  • Ito K, Chiba K, Horikawa M, Ishigami M, Mizuno N, Aoki J, Gotoh Y, Iwatsubo T, Kanamitsu S, Kato M, et al. (2002) Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS PharmSci 4:E25.

    Article  PubMed  Google Scholar 

  • Ito K, Hallifax D, Obach RS, and Houston JB (2005) Impact of parallel pathways of drug elimination and multiple cytochrome P450 involvement on drug-drug interactions: CYP2D6 paradigm. Drug Metab Dispos 33:837–844.

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Iwatsubo T, Kanamitsu S, Ueda K, Suzuki H, and Sugiyama Y (1998) Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver. Pharmacol Rev 50:387–411.

    CAS  PubMed  Google Scholar 

  • Ito K, Kusuhara H, and Sugiyama Y (1999) Effects of intestinal CYP3A4 and P-glycoprotein on oral drug absorption – theoretical approach. Pharm Res 16:225–231.

    Article  CAS  PubMed  Google Scholar 

  • Jaakkola T, Backman JT, Neuvonen M and Neuvonen PJ (2005) Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics of pioglitazone. Clin Pharmacol Ther 77:404–414.

    Article  CAS  PubMed  Google Scholar 

  • Kajosaari LI, Niemi M, Backman JT and Neuvonen PJ (2006) Telithromycin, but not montelukast, increases the plasma concentrations and effects of the cytochrome P450 3A4 and 2C8 substrate repaglinide. Clin Pharmacol Ther 79:231–242.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko H, Otsuka Y, Katagiri M, Maeda T, Tsuchiya M, Tamura M, Tamura A, Ishii T, Takagi S, and Shiba T (2001) Reassessment of monoethylglycinexylidide as preoperative liver function test in a rat model of liver cirrhosis and man. Clin Exp Med 1:19–26.

    Article  CAS  PubMed  Google Scholar 

  • Kharasch ED, Bedynek PS, Walker A, Whittington D and Hoffer C (2008) Mechanism of ritonavir changes in methadone pharmacokinetics and pharmacodynamics: II. Ritonavir effects on CYP3A and P-glycoprotein activities. Clin Pharmacol Ther 84:506–512.

    Article  CAS  PubMed  Google Scholar 

  • Kharasch ED, Hoffer C, Whittington D, and Sheffels P (2003) Role of P-glycoprotein in the intestinal absorption and clinical effects of morphine. Clin Pharmacol Ther 74:543–554.

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Cho JH, and Klaassen CD (1995) Depletion of hepatic 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and sulfate in rats by xenobiotics that are sulfated. J Pharmacol Exp Ther 275:654–658.

    CAS  PubMed  Google Scholar 

  • Klippert PJ and Noordhoek J (1985) The area under the curve of metabolites for drugs and metabolites cleared by the liver and extrahepatic organs. Its dependence on the administration route of precursor drug. Drug Metab Dispos 13:97–101.

    CAS  PubMed  Google Scholar 

  • Koch-Weser J (1974a) Bioavailability of drugs (first of two parts). N Engl J Med 291:233–237.

    Article  CAS  PubMed  Google Scholar 

  • Koch-Weser J (1974b) Bioavailability of drugs (second of two parts). N Engl J Med 291:503–506.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy P and Schuetz JD (2006) Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol 46:381–410.

    Article  CAS  PubMed  Google Scholar 

  • Kruh GD, Belinksky MG, Gallo JM, and Lee K (2007) Physiological and pharmacological functions of Mrp2, Mrp3 and Mrp4 as determined from recent studies on gene-disrupted mice. Cancer Mestastis Rev 26:5–14.

    Article  CAS  Google Scholar 

  • Kwon Y and Morris ME (1997) Membrane transport in hepatic clearance of drugs. II. Zonal distribution patterns of concentration-dependent transport and elimination process. Pharm Res 14::780–785.

    Article  Google Scholar 

  • Lewis AE (1949) The concept of hepatic clearance. Am J Clin Pathol 18:789–795.

    Google Scholar 

  • Li YM, Lv F, Xu X, Ji H, Gao WT, Lei TJ, Ren GB, Bai ZL, and Li Q (2003) Evaluation of liver functional reserve by combining D-sorbitol clearance rate and CT-measured liver volume. World J Gastroenterol 9:2092–2095.

    PubMed  Google Scholar 

  • Lin JH, Chiba M, and Baillie TA (1999) Is the role of the small intestine in first-pass metabolism overemphasized? Pharmacol Rev 51:135–158.

    CAS  PubMed  Google Scholar 

  • Lin JH, Sugiyama Y, Awazu S, and Hanano M (1982) Physiological pharmacokinetics of ethoxybenzamide based on biochemical data obtained in vitro as well as on physiological data. J Pharmacokinet Biopharm 10:649–661.

    Article  CAS  PubMed  Google Scholar 

  • Lin JH, Sugiyama Y, Hanano M, and Awazu S (1984) Effect of product inhibition on elimination kinetics of ethoxybenzamide in rabbits. Analysis by physiological pharmacokinetic model. Drug Metab Dispos 12:253–256.

    CAS  PubMed  Google Scholar 

  • Liu L, Mak E, Tirona RG, Tan E, Novikoff PM, Wang P, Wolkoff AW, and Pang KS (2005) Vascular binding, blood flow, transporter and enzyme interactions on the processing of digoxin in rat liver. J Pharmacol Exp Ther 315:433–448.

    Article  CAS  PubMed  Google Scholar 

  • Liu L and Pang KS (2006) An integrated approach to model hepatic drug clearance. Eur J Pharm Sci 29:215–230.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Tam D, Chen X, and Pang KS (2006) An unstirred water layer and P-glycoprotein barring digoxin absorption by the perfused rat small intestine preparation: induction studies with and without pregnenolone 16α-carbonitrile (PCN) induction. Drug Metab Dispos 34:1468–1479.

    Article  CAS  PubMed  Google Scholar 

  • Lüpfert C and Reichel A (2005) Development and application of physiologically based pharmacokinetic-modeling tools to support drug discovery. Chem Biodivers 2:1462–1486.

    Article  PubMed  Google Scholar 

  • Magee DF and Dalley AF II (1986) Digestion and The Structure and Function of The Gut, (Karger Continuing Education Series, vol. 8). Karger, Basel.

    Google Scholar 

  • Martínez-Salgado C, López-Hernández FJ, and López-Novoa JM (2007) Glomerular nephrotoxicity of aminoglycosides. Toxicol Appl Pharmacol 15(223):86–98.

    Article  CAS  Google Scholar 

  • Masereeuw R, Moons MM, Smits P, and Russel FG (1996) Glomerular filtration and saturable absorption of iohexol in the rat isolated perfused kidney. Br J Pharmacol 119:57–64.

    CAS  PubMed  Google Scholar 

  • McElnay JC and D’Arcy PF (1983) Protein binding displacement interactions and their clinical importance. Drugs 25:495–513.

    Article  CAS  PubMed  Google Scholar 

  • McNamara PJ, Trueb V, and Stoeckel K (1990) Ceftriaxone binding to human serum albumin. Indirect displacement by probenecid and diazepam. Biochem Pharmacol 40:1247–1253.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno N, Suzuki M, Kusuhara H, Suzuki H, Takeuchi K, Niwa T, Jonker JW, and Sugiyama Y (2004) Impaired renal excretion of 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040) sulfate in breast cancer resistance protein (BCRP1/ABCG2) knockout mice. Drug Metab Dispos 32:898–901.

    CAS  PubMed  Google Scholar 

  • Molino G, Avagnina P, Belforte G, and Bircher J (1998) Assessment of the hepatic circulation in humans: new concepts based on evidence derived from a D-sorbitol clearance method. J Lab Clin Med 131:393–405.

    Article  CAS  PubMed  Google Scholar 

  • Morris ME and Pang KS (1987) Competition between two enzymes for substrate removal in liver: modulating effects of competitive pathways. J Pharmacokinet Biopharm 15:473–496.

    Article  CAS  PubMed  Google Scholar 

  • Möller E, McIntosh JR, and van Slyke DD (1928) Studies of urea excretion II: relationship between urine volume and the rate of urea excretion by normal adults. J Clin Invest 6:427–465.

    Article  PubMed  Google Scholar 

  • Nagai J and Tokano M (2004) Molecular aspects of renal handling of aminoglycosides and strategies for preventing the nephrotoxicity. Drug Metab Pharmacokinet 19:159–170.

    Article  CAS  PubMed  Google Scholar 

  • Nakagami T, Yasui-Furukori N, Saito M, Tateishi T, and Kaneo S (2005) Effect of verapamil on pharmacokinetics and pharmacodynamics of risperidone: in vivo evidence of involvement of P-glycoprotein in risperidone disposition. Clin Pharmacol Ther 78:43–51.

    Article  CAS  PubMed  Google Scholar 

  • Obach RS, Walsky RL, Venkatakrishnan K, Emily A Gaman EA, Houston JB and Tremaine LM (2006) The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions. J Pharmacol Exp Ther 316:336–348.

    Article  CAS  PubMed  Google Scholar 

  • Orlando R, De Martin S, Pegoraro P, Quintieri L, and Palatini P (2009) Irreversible CYP3A inhibition accompanied by plasma protein-binding displacement: a comparative analysis in subjects with normal and impaired liver function. Clin Pharmacol Ther 85:319–326.

    Article  CAS  PubMed  Google Scholar 

  • Palkama VJ, Ahonen J, Neuvonen PJ, and Olkkola KT (1999) Effect of saquinavir on the pharmacokinetics and pharmacodynamics of oral and intravenous midazolam. Clin Pharmacol Ther 66:33–39.

    Article  CAS  PubMed  Google Scholar 

  • Pang KS (1995) Modeling of metabolite disposition. In, Advanced Methods of Pharmacokinetic and Pharmacodynamic System Analysis Volume II, (DZ D‘Argenio ed), Plenum Press, New York, pp 3–26.

    Google Scholar 

  • Pang KS (2003) Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (For the Gillette Review Series). Drug Metab Dispos 31:1507–1519.

    Article  CAS  PubMed  Google Scholar 

  • Pang KS (2009) Safety testing of metabolites: expectations and outcomes. ChemicoBiol Interac 179:45–59.

    Article  CAS  Google Scholar 

  • Pang KS, Barker III F, Simard A, Schwab AJ, and Goresky CA (1995) Sulfation of acetaminophen by the perfused rat liver: Effect of red blood cell carriage. Hepatology 22:267–282.

    Article  CAS  PubMed  Google Scholar 

  • Pang KS, Morris ME, and Sun H (2008) Formed and preformed metabolite: Facts and comparisons. J Pharm Pharmacol 60:1247–1275.

    Article  CAS  PubMed  Google Scholar 

  • Pang KS and Rowland M (1977) Hepatic clearance of drugs. I. Theoretical considerations of a "well-stirred" model and a "parallel tube" model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J Pharmacokinet Biopharm 5:625–653.

    Article  CAS  PubMed  Google Scholar 

  • Pang KS and Stillwell RN (1983) An understanding of the role of enzymic localization of the liver on metabolite kinetics: a computer simulation. J Pharmacokinet Biopharm 11:451–468.

    Article  CAS  PubMed  Google Scholar 

  • Pang KS, Cherry WF, and Ulm EH (1985) Disposition of enalapril in the perfused rat intestine-liver preparation: Absorption, metabolism, and first-pass effects. J Pharmacol Exp Ther 233:788–795.

    Google Scholar 

  • Perl W and Chinard FP (1968) A convection-diffusion model of indicator transport through an organ. Circ Res 22:273–298.

    CAS  PubMed  Google Scholar 

  • Peters SA (2008a) Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles. Clin Pharmacokinet 47:245–259.

    Article  CAS  PubMed  Google Scholar 

  • Peters SA (2008b) Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis. Clin Pharmacokinet 47:261–275.

    Article  CAS  PubMed  Google Scholar 

  • Poulin P and Theil FP (2002) Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically based pharmacokinetic models of drug disposition. J Pharm Sci 91:1358–1370.

    Article  CAS  PubMed  Google Scholar 

  • Rappaport AM (1958) The structural and functional unit in the human liver (liver acinus). Anat Rec 130:673–689.

    Article  CAS  PubMed  Google Scholar 

  • Roberts MS and Rowland M (1985) Hepatic elimination – dispersion model. J Pharm Sci 74:585–587.

    Article  CAS  PubMed  Google Scholar 

  • Robey RW, Polgar O, Deeken J, To KW, and Bates SE (2007) ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasi Rev 26:39–57.

    Article  CAS  Google Scholar 

  • Rodriguez CA and Smith DE (1991) Influence of unbound concentration of cefonicid on its renal elimination in isolated perfused rat kidney. Antimicrob Agents Chemother 35:2395–2400.

    CAS  PubMed  Google Scholar 

  • Rowland M (1972) Influence of route of administration on drug availability. J Pharm Sci 61:70–74.

    Article  CAS  PubMed  Google Scholar 

  • Rowland M, Benet LZ, and Graham GG (1973) Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharm 1:123–136.

    Article  CAS  PubMed  Google Scholar 

  • Rowland M and Matin SB (1973) Kinetics of drug–drug interactions. J Pharmacokinet Biopharm 1::553–567.

    Article  Google Scholar 

  • Rowland M and Tozer TN (1995) Clinical Pharmacokinetics: Concepts and Applications 3rd edition, Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Russel FG, Wouterse AC, and van Ginnekan CA (1987) Physiologically based pharmacokinetic model for the renal clearance of phenolsulfonphthalein and the interaction with probenecid and salicyluric acid in the dog. J Pharmacokinet Biopharm 15:349–368.

    Article  CAS  PubMed  Google Scholar 

  • Russel FG, Wouterse AC, and van Ginnekan CA (1989) Physiologically based pharmacokinetic model for the renal clearance of iodopyracet and the interaction with probenecid in the dog. Biopharm Drug Dispos 10:137–152.

    Article  CAS  PubMed  Google Scholar 

  • Saari TI, Laine K, Leino K, Valtonen M, Neuvonen PJ and Olkkola KT (2006) Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin Pharmacol Ther 79:362–370.

    Article  CAS  PubMed  Google Scholar 

  • Sakka SG (2007) Assessing liver function. Curr Opin Crit Care 13:207–214.

    Article  PubMed  Google Scholar 

  • Sarangapani R, Teeguarden JG, Cruzan G, Clewell HJ, and Andersen ME (2002) Physiologically based pharmacokinetic modeling of styrene and styrene oxide respiratory-tract dosimetry in rodents and humans. Inhal Toxicol 12:789–834.

    Article  CAS  Google Scholar 

  • Schary WL and Rowland M (1983) Protein binding and hepatic clearance: studies with tolbutamde, a drug of low intrinsic clearance, in the isolated perfused rat liver preparation. J Pharmacokinet Biopharm 11:225–243.

    Article  CAS  PubMed  Google Scholar 

  • Schwab AJ, Barker III F, Goresky CA, and Pang KS (1990) Transfer of enalaprilat across rat liver cell membranes is barrier-limited. Am J Physiol 258:G461–G475.

    CAS  PubMed  Google Scholar 

  • Schwab AJ, de Lannoy IAM, Poon K, Goresky CA, and Pang KS (1992) Enalaprilat handling by the rat kidney: barrier-limited cell entry. Am J Physiol 263:F858–F869.

    CAS  PubMed  Google Scholar 

  • Shitara Y, Hirano M, Sata H, and Sugiyama Y (2004) Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 311:228–236.

    Article  CAS  PubMed  Google Scholar 

  • Shitara Y, Horie T, and Sugiyama Y (2006) Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci 27:425–446.

    Article  CAS  PubMed  Google Scholar 

  • Sirianni GL and Pang KS (1997) Organ clearance concepts: new perspectives on old principles. J Pharmacokinet Biopharm 25:449–470.

    Article  CAS  PubMed  Google Scholar 

  • Sirianni GL and Pang KS (1999) Inhibition of esterolysis of enalapril by paraoxon increases the urinary clearance in isolated perfused rat kidney. Drug Metab Dispos 27:931–936.

    CAS  PubMed  Google Scholar 

  • Sugimoto Y, Tsukahara S, Ishikawa E, and Mitsuhashi J (2005) Breast cancer resistance protein: molecular target for anticancer drug resistance and pharmacokinetics/pharmacodynamics. Cancer Sci 96:457–465.

    Article  CAS  PubMed  Google Scholar 

  • Sun H and Pang KS (2009a) Disparity in intestine disposition between formed and preformed metabolites and implications: a theoretical study. Drug Metab Dispos 37:187–202.

    Article  CAS  PubMed  Google Scholar 

  • Sun and Pang (2009b) Physiological modeling to understand the impact of enzymes and transporters on drug and metabolite data and bioavailability estimates. Pharm Res, Under revision.

    Google Scholar 

  • Sun H, Liu L, and Pang KS (2006) Increased estrogen sulfation of estradiol 17β-D glucuronide in rat metastasis tumor livers. J Pharmacol Exp Ther 319:818–831.

    Article  CAS  PubMed  Google Scholar 

  • Swan SK (1997) Aminoglycoside toxicity. Semin Nephrol 17:27–33.

    CAS  PubMed  Google Scholar 

  • Tam D, Tirona RG, and Pang KS (2003) Segmental intestinal transporters and metabolic enzymes on intestinal drug absorption. Drug Metab Dispos 33:373–383.

    Article  Google Scholar 

  • Tan E and Pang KS (2001) Sulfation is rate limiting in the futile cycling between estrone and estrone sulfate in enriched periportal and perivenous rat hepatocytes. Drug Metab Dispos 29:335–346.

    CAS  PubMed  Google Scholar 

  • Theil FP, Guentert TW, Haddad S, and Poullin P (2003) Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicol Lett 138:29–49.

    Article  CAS  PubMed  Google Scholar 

  • Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, and Willingham MC (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 84:7735–7738.

    Article  CAS  PubMed  Google Scholar 

  • Tirona RG, Tan E, Meier G, and Pang KS (1999) Uptake and glutathione conjugation kinetics of ethacrynic acid in rat liver: in vitro and perfusion studies. J Pharmacol Exp Ther 291:1210–1219.

    CAS  PubMed  Google Scholar 

  • Toon S, Low LK, Gibaldi M, Trager WF, O’Reilly RA, Motley CH, and Goulart DA (1986) The warfarin-sulfinpyrazone interaction: stereochemical considerations. Clin Pharmacol Ther 39:15–24.

    Article  CAS  PubMed  Google Scholar 

  • Tornio A, Niemi M, Neuvonen M, Laitila J, Kalliokoski A, Neuvonen PJ and Backman JT (2008) The effect of gemfibrozil on repaglinide pharmacokinetics persists for at least 12 h after the dose: evidence for mechanism-based inhibition of CYP2C8 in vivo. Clin Pharmacol Ther 84:403–411.

    Article  CAS  PubMed  Google Scholar 

  • Toto RD (1995) Conventional measurement of renal function using serum creatinine, creatinine clearance, inulin and para-aminohippuric acid clearance. Curr Opin Nephrol Hypertens 4:505–509.

    Article  CAS  PubMed  Google Scholar 

  • Trauner M and Boyer JL (2003) Bile salt transporters: molecular characterization, function and regulation. Physiol Rev 83:633–671.

    CAS  PubMed  Google Scholar 

  • Tucker GT, Houston JB, and Huang S-M (2001) Optimising drug development: strategies to assess drug metabolism/transporter interaction potential – toward a consensus. Clin Pharmacol Ther 70:103–114.

    Article  CAS  PubMed  Google Scholar 

  • Ungell AL, Nylander S, Bergstrand S, Sjöberg A, and Lennernäs H (1998) Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci 87:360–366.

    Article  CAS  PubMed  Google Scholar 

  • van Montfoort JE, Hagenbuch B, Groothuis GM, Koepsell H, Meier PJ, and Meijer DK (2003) Drug uptake systems in liver and kidney. Curr Drug Metab 4:185–211.

    Article  PubMed  Google Scholar 

  • Vaubourdolle M, Guffet V, Chazouillères O, Biboudeau J, and Poupon R (1991) Indocyanine green-sulfobromophthalein pharmacokinetics for diagnosing primary biliary cirrhosis and assessing histological severity. Clin Chem 37:1688–1690.

    CAS  PubMed  Google Scholar 

  • Vlaming ML, Lagas JS, and Schinkel AH (2009) Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout mice. Adv Drug Deliv Rev 62:14–25.

    Article  CAS  Google Scholar 

  • Wagner JG (1972) An overview of the analysis and interpretation of bioavailability studies in man. Pharmacology 8:102–117.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-H, Jones DR, and Hall SD (2004) Prediction of cytochrome P450 3A inhibition by verapamil enantiomers and their metabolites. Drug Metab Dispos 32:259–266.

    Article  CAS  PubMed  Google Scholar 

  • Weisiger RA (1985) Dissociation from albumin: a potentially rate-limiting step in the clearance of substances by the liver. Proc Natl Acad Sci USA 82:1563–1567.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson GR (1987) Clearance approaches in pharmacology. Pharmacol Rev 39:1–47.

    CAS  PubMed  Google Scholar 

  • Wilkinson GR and Shand DG (1975) Commentary: a physiological approach to hepatic drug clearance. Clin Pharmacol Ther 18:377–390.

    CAS  PubMed  Google Scholar 

  • Winkler K, Keiding S, and Tygstrup N (1973) Clearance as a quantitative measure of liver function. In, The Liver: Quantitative Aspects of Structure and Functions (P Paumgartner, and R Presig, eds), Karger, Basel, pp 144–155.

    Google Scholar 

  • Wong BK, Bruhin PJ, Barrish A, and Lin JH (1996) Nonlinear dorzolamide pharmacokinetics in rats: concentration-dependent erythrocyte distribution and drug-metabolite displacement interaction. Drug Metab Dispos 24:659–663.

    CAS  PubMed  Google Scholar 

  • Xu X and Pang KS (1989) Hepatic modeling of metabolite kinetics in sequential and parallel pathways: salicylamide and gentisamide metabolism in perfused rat liver. J Pharmacokinet Biopharm 17:645–671.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Tang BK, and Pang KS (1990) Sequential metabolism of salicylamide exclusively to gentisamide-5-glucuronide and not gentisamide sulfate conjugates in single pass in situ perfused rat liver. J Pharmacol Exp Ther 253:965–973.

    CAS  PubMed  Google Scholar 

  • Yacobi A, Øie S and Levy G (1977) Relationship between protein binding of bilirubin, salicylic acid and sulfisoxazole in serum of unmediated and phenobarbital-treated rats. Frequency distribution of bilirubin intrinsic clearance in adult male Sprague-Dawley rats. J Pharm Sci 66:1025–1027.

    Article  CAS  PubMed  Google Scholar 

  • Yacobi A, Øie S and Levy G (1979) Effect of serum protein binding on sulfisoxazole distribution, metabolism, and excretin in rats. J Pharm Sci 68:742–746.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Jamei M, Yeo KR, Tucker GT and Rostami-Hodjegan A (2007) Prediction of intestinal first-pass drug metabolism. Curr Drug Metab 8:676–684.

    Article  CAS  PubMed  Google Scholar 

  • Yu LX and Amidon GL (1998) Saturable small intestinal drug absorption in humans: modeling and interpretation of cetrizine data. Eur J Pharmaceut Biopharm 45:199–203.

    Article  CAS  Google Scholar 

  • Yu HY, Shen YZ, Sugiyama Y, and Hanano M (1990) Drug interaction. Effects of salicylate on pharmacokinetics of valproic acid in rats. Drug Metab Dispos 18:121–126.

    CAS  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Hoffmaster KA, Nezasa K, Tallamn MN, and Brouwer KL (2006) Integration of hepatic drug transporters and phase II metabolizing enzymes: mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur J Pharm Sci 27:447–486.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Jones DR, and Hall SD (2009b) Prediction of the effect of erythromycin, diltiazem, and their metabolites, alone and in combination, on CYP3A4 inhibition. Drug Metab Dispos 37:150–160.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Quinney SK, Gorski JC, Jones DR, and Hall SD (2009a) Semi-physiologically-based pharmacokinetic models for the inhibition of midazolam clearance by diltiazem and its major metabolite. Drug Metab Dispos 37:1587–1597.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work is supported by the Canadian Institute for Health Research, CIHR (MOP89850).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sandy Pang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pang, K.S., Sun, H., Chow, E.C. (2010). Impact of Physiological Determinants: Flow, Binding, Transporters and Enzymes on Organ and Total Body Clearances. In: Pang , K., Rodrigues, A., Peter, R. (eds) Enzyme- and Transporter-Based Drug-Drug Interactions. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0840-7_5

Download citation

Publish with us

Policies and ethics