Skip to main content
Log in

Physiological pharmacokinetics of ethoxybenzamide based on biochemical data obtainedin vitro as well as on physiological data

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Ethoxybenzamide (EB) concentrations in plasma and various tissues were simulated using a physiological pharmacokinetic model. The biochemical parameters, such as plasma and tissue binding constants and Michaelis-Menten constants for EB deethylation, which were needed for these simulations, were, however, obtained from in vitro data. The simulations predicted well the observed data in plasma and various tissues of the rat. Furthermore, animal scale-up predicted reasonably well the concentrations of EB in plasma and various tissues of the rabbit from data gathered in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. B. Bischoff. Applications of a mathematical model for drug distribution in mammals. InChemical Engineering In Medicine and Biology, D. Hershey (ed.), Plenum Press, New York. 1967, pp. 417–446.

    Chapter  Google Scholar 

  2. R. L. Dedrick and K. B. Bischoff. Pharmacokinetics in applications of the artificial kidney.Chem. Engr. Prog. Symp. Ser. No. 84,64:32–44 (1968).

    CAS  Google Scholar 

  3. K. J. Himmelstein and R. J. Lutz. A review of the applications of physiologically based pharmacokinetic modeling.J. Pharmacokin. Biopharm. 7:127–145 (1979).

    Article  CAS  Google Scholar 

  4. R. L. Dedrick, D. D. Forrester, and D. H. W. Ho. In vitro-in vivo correlation of drug metabolism-deamination of l-β-D-arabinofuranosylcytosine.Biochem. Pharmacol. 21:1–16 (1972).

    Article  CAS  PubMed  Google Scholar 

  5. J. H. Lin, M. Hayashi, S. Awazu, and M. Hanano. Correlation between in vitro and in vivo drug metabolism rate: oxidation of ethoxybenzamide in rat.J. Pharmacokin. Biopharm. 6:327–337 (1978).

    Article  CAS  Google Scholar 

  6. J. H. Lin, Y. Sugiyama, S. Awazu, and M. Hanano.In vitro andin vivo evaluation of the tissue to plasma partition coefficient for physiological pharmacokinetic models.J. Pharmacokin. Biopharm. 10:637–647 (1982).

    Article  CAS  Google Scholar 

  7. R. L. Dedrick. Animal scale-up.J. Pharmacokin. Biopharm. 1:435–461 (1973).

    Article  CAS  Google Scholar 

  8. R. L. Dedrick and K. B. Bischoff. Species similarities in pharmacokinetics.Fed. Proc. 39:54–59 (1980).

    CAS  PubMed  Google Scholar 

  9. H. Baur, S. Kasperek, and E. Pfaff. Criteria of viability of isolated liver cells.Hoppe-Seyler's Z. Physiol. Chem. 356:827–838 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. P. O. Seglen. Preparation of isolated rat liver cells.Methods Cell Biology. 13:29–83 (1976).

    Article  CAS  Google Scholar 

  11. J. H. Lin, Y. Sugiyama, S. Awazu, and M. Hanano. Kinetic studies on the deethylation of ethoxybenzamide: a comparative study with isolated hepatocytes and liver microsomes of rat.Biochem. Pharmacol. 29:2825–2830 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. M. L. Rao, G. S. Rao, M. Holler, H. Breuer, P. J. Schattenberg, and W. D. Stein. Uptake of cortisol by isolated rat liver cells. A phenomenon indicative of carrier-mediation and simple diffusion.Hoppe-Seyler's Z. Physiol. Chem. 357:573–584 (1976).

    Article  CAS  PubMed  Google Scholar 

  13. P. A. Harris and J. F. Gross. Preliminary pharmacokinetic model for adriamycin (NSC-123127).Cancer Chemother. Rep. 59:819–825 (1975).

    CAS  PubMed  Google Scholar 

  14. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  15. N. Benowitz, R. P. Forsyth, K. L. Melmon, and M. Rowland. Lidocaine disposition kinetics in monkey and man. I. Prediction by a perfusion model.Clin. Pharmacol. Ther. 16:87–98 (1974).

    CAS  PubMed  Google Scholar 

  16. R. L. Dedrick, D. S. Zaharko, and R. J. Lutz. Transport and binding of methotrexate in vivo.J. Pharm. Sci. 62:882–890 (1973).

    Article  CAS  PubMed  Google Scholar 

  17. Y. Sasaki and H. N. Wagner. Measurement of the distribution of cardiac output in unanesthetized rats.J. Appl. Physiol. 30:879–884 (1968).

    Google Scholar 

  18. J. M. Neutze, F. Wyler, and A. M. Rudolph. Use of radioactive microspheres to assess distribution of cardiac output in rabbit.Am. J. Physiol. 215:486–495 (1968).

    CAS  PubMed  Google Scholar 

  19. P. O. Seglen. Preparation of rat liver cells. III. Enzymatic requirements for tissue dispersion.Exp. Cell. Res. 82:391–398 (1973).

    Article  CAS  PubMed  Google Scholar 

  20. L. I. Harrison and M. Gibaldi. Physiologically based pharmacokinetic model for digoxin distribution and elimination in rat.J. Pharm. Sci. 66:1138–1142 (1977).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant-in-aid for scientific research provided by the Ministry of Education, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J.H., Sugiyama, Y., Awazu, S. et al. Physiological pharmacokinetics of ethoxybenzamide based on biochemical data obtainedin vitro as well as on physiological data. Journal of Pharmacokinetics and Biopharmaceutics 10, 649–661 (1982). https://doi.org/10.1007/BF01062546

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062546

Key words

Navigation