Skip to main content

Bioenergy Production: Opportunities for Microorganisms (Part I)

  • Chapter
  • First Online:
Bioenergy Research: Commercial Opportunities & Challenges

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 464 Accesses

Abstract

The overconsumption of the non-renewable sources of energy has caused ecological imbalance and this has paved the way for the utilization of the renewable energy sources. Sustainable energy sources include solar energy, plant or forest biomass, tidal and wind energy. Renewable sources of energy are traditional, conventional, or new. Production of eco-friendly energy sources is now in high demand. The task for the production of sustainable energy can be overtook by a wide variety of microbes. A wide variety of microorganisms encompass the potential of biofuel production, for example, many bacteria can directly produce ethanol by sugar degradation. Microalgae and cyanobacteria can reduce CO2 to biofuels by photosynthesis. Methanotrophs can produce methanol by oxidizing methane. Geobacter sulfurreducens and Shewanella oneidensis can be used in the microbial fuel cells (MFCs) for bioelectricity and biohydrogen production. MFCs use catabolic function of microbes and generate electricity by using a wide variety of materials, for example, biomass. Recent research has shown that MFCs will be able to replace the non-renewable sources of energy and will produce electricity adequate for the consumption of human society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

H2:

Hydrogen gas

MFC:

Microbial fuel cell

CH4:

Methane

MMOs:

Methane monooxygenases

CoA:

Coenzyme-A

BECs:

Bioelectrochemical cells

BESs:

Bioelectrochemical systems

PD:

Power density

CE:

Coulombic efficiency

PEMs:

Proton exchange membranes

COD:

Chemical oxygen demand

SMFC:

Sediment-type microbial fuel cell

IEMs:

Ion exchange membranes

AEM:

Anion exchange membrane

CEM:

Cation exchange membrane

MEC:

Microbial electrolysis cell

ARB:

Anode-respiring bacteria

EAB:

Electrochemically active bacteria

EET:

Extracellular electron transfer

EEAs:

Extracellular electron acceptors

PMEC:

Photosynthetic microbial electrochemical cell

PBRs:

Photobioreactors

DO:

Dissolved oxygen

MXCs:

Microbial electrochemical cells

VFAs:

Volatile fatty acids

mMFCs:

Microalgae-based microbial fuel cells

EAMs:

Electroactive microorganisms

ARB:

Anode-respiring bacteria

References

  • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394

    Article  CAS  PubMed  Google Scholar 

  • Alavijeh MK, Mardanpour MM, Yaghmaei S (2015) A generalized model for complex wastewater treatment with simultaneous bioenergy production using the microbial electrochemical cell. Electrochim Acta 167:84–96

    Google Scholar 

  • Allen RM, Bennetto HP (1993) Microbial fuel-cells. Appl Biochem Biotechnol 39:27–40

    Article  Google Scholar 

  • An J, Li N, Wan L, Zhou L, Du Q, Li T, Wang X (2017) Electric field induced salt precipitation into activated carbon air-cathode causes power decay in microbial fuel cells. Water Res 123:369–377

    Article  CAS  PubMed  Google Scholar 

  • Antonopoulou G, Stamatelatou K, Bebelis S, Lyberatos G (2010) Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem Eng J 50:10–15

    Article  CAS  Google Scholar 

  • Appleby A, Foulkes F (1989) Fuel cell handbook, Chap. 12. Van Nostrand Reinhold, New York

    Google Scholar 

  • Arico A, Baglio V, Di Blasi A, Antonucci V, Cirillo L, Ghielmi A, Arcella V (2006) Proton exchange membranes based on the short-side-chain perfluorinated ionomer for high temperature direct methanol fuel cells. Desalination 199:271–273

    Article  CAS  Google Scholar 

  • Baicha Z, Salar-García MJ, Ortiz-Martínez VM, Hernández-Fernández FJ, de los Ríos AP, Labjar N, Lotfi E, Elmahi M (2016) A critical review on microalgae as an alternative source for bioenergy production: a promising low cost substrate for microbial fuel cells. Fuel Process Technol 154:104–116

    Article  CAS  Google Scholar 

  • Bensaid S, Ruggeri B, Saracco G (2015) Development of a photosynthetic microbial electrochemical cell (PMEC) reactor coupled with dark fermentation of organic wastes: medium term perspectives. Energies 8:399–429

    Article  CAS  Google Scholar 

  • Bettin C (2006) Applicability and feasibility of incorporating microbial fuel cell technology into implantable biomedical devices. The Ohio State University. Department of Food, Agricultural and Biological Engineering Honors Theses

    Google Scholar 

  • Bhatia SK, Mehariya S, Bhatia RK, Kumar M, Pugazhendhi A, Awasthi MK, Atabani AE, Kumar G, Kim W, Seo SO, Yang YH (2021) Wastewater based microalgal biorefinery for bioenergy production: progress and challenges. Sci Total Environ 751:141599

    Article  CAS  PubMed  Google Scholar 

  • Birjandi N, Younesi H, Ghoreyshi AA, Rahimnejad M (2016) Electricity generation through degradation of organic matters in medicinal herbs wastewater using bio-electro-Fenton system. J Environ Manag 180:390–400

    Article  CAS  Google Scholar 

  • Bolton CR, Randall DG (2019) Development of an integrated wetland microbial fuel cell and sand filtration system for greywater treatment. J Environ Chem Eng 7:103249

    Article  CAS  Google Scholar 

  • Borole AP, Hamilton CY, Vishnivetskaya TA (2011) Enhancement in current density and energy conversion efficiency of 3-dimensional MFC anodes using pre-enriched consortium and continuous supply of electron donors. Bioresour Technol 102:5098–5104

    Article  CAS  PubMed  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Cai T, Ge X, Park SY, Li Y (2013a) Comparison of Synechocystis sp. PCC6803 and Nannochloropsis salina for lipid production using artificial seawater and nutrients from anaerobic digestion effluent. Bioresour Technol 144:255–260

    Article  CAS  PubMed  Google Scholar 

  • Cai T, Park SY, Li Y (2013b) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Campo A, Cañizares P, Rodrigo MA, Fernández FJ, Lobato J (2013) Microbial fuel cell with an algae-assisted cathode: a preliminary assessment. J Power Sources 242:638–645

    Article  CAS  Google Scholar 

  • Catal T, Li K, Bermek H, Liu H (2008) Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources 175:196–200

    Article  CAS  Google Scholar 

  • Chae KJ, Choi MJ, Lee J, Ajayi FF, Kim IS (2008) Biohydrogen production via bio-catalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis. Int J Hydrog Energy 33:5184–5192

    Article  CAS  Google Scholar 

  • Chandra R, Iqbal HMN, Vishal G, Lee HS, Nagra S (2019) Algal biorefinery: a sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour Technol 278:346–359

    Article  CAS  PubMed  Google Scholar 

  • Chang IS, Moon H, Jang JK, Kim BH (2005) Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens Bioelectron 20:1856–1859

    Article  CAS  PubMed  Google Scholar 

  • Chang JJ, Ho FJ, Ho CY, Wu YC, Hou YH, Huang CC, Shih M-C, Li W-H (2013) Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. Biotechnol Biofuels 6:19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee P, Dessì P, Kokko M, Lakaniemi A-M, Lens P (2019) Selective enrichment of biocatalysts for bioelectrochemical systems: a critical review. Renew Sust Energ Rev 109:10–23

    Article  CAS  Google Scholar 

  • Chauhan DS, Goswami G, Dineshbabu G, Palabhanvi B, Das D (2019) Evaluation and optimization of feedstock quality for direct conversion of microalga Chlorella sp. FC2 IITG into biodiesel via supercritical methanol transesterification. Biomass Convers Biorefinery 10:17

    Google Scholar 

  • Chen GW, Choi SJ, Lee TH, Lee GY, Cha JH, Kim CW (2008) Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl Microbiol Biotechnol 79:379–388

    Article  CAS  PubMed  Google Scholar 

  • Chen W-H, Lin B-J, Huang M-Y, Chang J-S (2015) Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol 184:314–327

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Chen WH, Lin BJ, Chang JS, Ong HC (2016) Impact of torrefaction on the composition, structure and reactivity of a microalga residue. Appl Energy 181:110–119

    Article  CAS  Google Scholar 

  • Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee DJ, Chang JS (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Cho YK, Donohue TJ, Tejedor I, Anderson MA, McMahon KD, Noguera DR (2008) Development of a solar-powered microbial fuel cell. J Appl Microbiol 104:640–650

    Article  CAS  PubMed  Google Scholar 

  • Cogne G, Cornet JF, Gros JB (2005) Design, operation, and modeling of a membrane photobioreactor to study the growth of the Cyanobacterium Arthrospira platensis in space conditions. Biotechnol Prog 21:741–750

    Article  CAS  PubMed  Google Scholar 

  • Costa JAV, de Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102:2–9

    Article  CAS  PubMed  Google Scholar 

  • Dai H, Yang H, Liu X, Jian X, Liang Z (2016) Electrochemical evaluation of nano-Mg (OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell. Fuel 174:251–256

    Article  CAS  Google Scholar 

  • Davis MS, Cronan JE (2001) Inhibition of Escherichia coli acetyl coenzyme a carboxylase by acyl-acyl carrier protein. J Bacteriol 183:1499–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bhowmick G, Sarmah AK, Sen R (2019) Zero-waste algal biorefinery for bioenergy and biochar: a green leap towards achieving energy and environmental sustainability. Sci Total Environ 650:2467–2482

    Article  PubMed  CAS  Google Scholar 

  • De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103:296–304

    Article  PubMed  CAS  Google Scholar 

  • Deng Q, Li X, Zuo J, Ling A, Logan BE (2009) Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J. Power Sources 195:1130–1135

    Article  CAS  Google Scholar 

  • Deng L, Ngo HH, Guo W, Wang J, Zhang H (2018) Evaluation of a new sponge addition-microbial fuel cell system for removing nutrient from low C/N ratio wastewater. Chem Eng J 338:166–175

    Article  CAS  Google Scholar 

  • Deval AS, Parikh HA, Kadier A, Chandrasekhar K, Bhagwat AM, Dikshit AK (2017) Sequential microbial activities mediated bioelectricity production from distillery wastewater using bio-electrochemical system with simultaneous waste remediation. Int J Hydrog Energy 42:1130–1141

    Article  CAS  Google Scholar 

  • Dias M, Salvado JC, Monperrus M, Caumette P, Amouroux D, Duran R, Guyoneaud R (2008) Characterization of Desulfomicrobium salsuginis sp. nov. and Desulfomicrobium aestuarii sp. nov., two new sulfate-reducing bacteria isolated from the Adour estuary (French Atlantic coast) with specific mercury methylation potentials. Syst Appl Microbiol 31:30–37

    Article  CAS  PubMed  Google Scholar 

  • Dihrab SS, Sopian K, Alghoul M, Sulaiman M (2009) Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells. Renew Sust Energ Rev 13:1663–1668

    Article  CAS  Google Scholar 

  • Djellali M, Kameche M, Kebaili H, Bouhent MM, Benhamou A (2019) Synthesis of nickel-based layered double hydroxide (LDH) and their adsorption on carbon felt fibres: application as low-cost cathode catalyst in microbial fuel cell (MFC). Environ Technol 16:1–13

    Google Scholar 

  • Dragone G, Fernandes B, Vicente AA, Teixeira JA (2010) Third generation biofuels from microalgae. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Madrid, pp 1355–1366

    Google Scholar 

  • Du Z, Li H, Gu T (2007) A state-of-the-art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    Article  CAS  PubMed  Google Scholar 

  • Duan PG, Yang SK, Xu YP, Wang F, Zhao D, Weng YJ, Shi XL (2018) Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass. Energy 155:734–745

    Article  CAS  Google Scholar 

  • Elliott DC (2016) Review of recent reports on process technology for thermochemical conversion of whole algae to liquid fuels. Algal Res 13:255–263

    Article  Google Scholar 

  • ElMekawy A, Hegab HM, Vanbroekhoven K, Pant D (2014) Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renew Sust Energ Rev 39:617–627

    Article  CAS  Google Scholar 

  • Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413

    Article  CAS  PubMed  Google Scholar 

  • Feng C, Tsai CC, Ma CY, Yu CP, Hou CH (2017) Integrating cost-effective microbial fuel cells and energy-efficient capacitive deionization for advanced domestic wastewater treatment. Chem Eng J 330:1–10

    Article  CAS  Google Scholar 

  • Finch AS, Mackie TD, Sund CJ, Sumner JJ (2011) Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell. Bioresour Technol 102:312–315

    Article  CAS  PubMed  Google Scholar 

  • Fornero JJ, Rosenbaum M, Cotta MA, Angenent LT (2008) Microbial fuel cell performance with a pressurized cathode chamber. Environ Sci Technol 42:8578–8584

    Article  CAS  PubMed  Google Scholar 

  • Franks AE, Nevin K (2010) Microbial fuel cells: a current review. Energies 3:899–919

    Google Scholar 

  • Fuerst J (2013) Planctomycetes: cell structure, origins and biology. Humana Press, New York

    Book  Google Scholar 

  • Gajda I, Greenman J, Melhuish C, Ieropoulos I (2015) Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass Bioenergy 82:87–93

    Article  CAS  Google Scholar 

  • Gao F, Yang ZH, Li C, Wang YJ, Jin WH, Deng YB (2014) Concentrated microalgae cultivation in treated sewage by membrane photobioreactor operated in batch flow mode. Bioresour Technol 167:441–446

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Yang ZH, Li C, Zeng GM, Ma DH, Zhou L (2015) A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour Technol 179:8–12

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi M, Shahgaldi S, Ismail M, Yaakob Z, Daud WRW (2012) New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems. Chem Eng J 184:82–89

    Article  CAS  Google Scholar 

  • Ghasemi M, Daud WRW, Hassan SHA, Oh S-E, Ismail M, Rahimnejad M, Jahima JM (2013a) Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review. J Alloys Compd 580:245–255

    Article  CAS  Google Scholar 

  • Ghasemi M, Daud WRW, Rahimnejad M, Rezayi M, Fatemi A, Jafari Y, Somalu M, Manzour A (2013b) Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells. Int J Hydrog Energy 38:9533–9540

    Article  CAS  Google Scholar 

  • Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74:3022–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnana Kumar G, Sathiya Sarathi VG, Suk Nahm K (2013) Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens Bioelectron 43:461–475

    Article  PubMed  CAS  Google Scholar 

  • Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 36:2086–2097

    Article  Google Scholar 

  • Gollakota ARK, Kishore N, Gu S (2018) A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev 81:1378–1392

    Article  Google Scholar 

  • González-Fernández C, Sialve B, Bernet N, Steyer J (2012) Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels Bioprod Biorefin 6:205–218

    Article  CAS  Google Scholar 

  • Gude VG (2016) Wastewater treatment in microbial fuel cells-an overview. J Clean Prod 122:287–307

    Article  CAS  Google Scholar 

  • Guo X, Liu J, Xiao B (2013) Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells. Int J Hydrog Energy 38:1342–1347

    Article  CAS  Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harnisch F, Schröder U (2009) Selectivity versus mobility: separation of anode and cathode in microbial bioelectrochemical systems. ChemSusChem 2:921–926

    Article  CAS  PubMed  Google Scholar 

  • Harnisch F, Schröder U, Scholz F (2008) The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells. Environ Sci Technol 42:1740–1746

    Article  CAS  PubMed  Google Scholar 

  • Hassan SH, El-Rab S, Rahimnejad M, Ghasemi M, Joo J, Ok Y, Kim I, Oh S (2014) Electricity generation from rice straw using a microbial fuel cell. Int J Hydrogen Eng 39:9490–9496

    Article  CAS  Google Scholar 

  • He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009–2015

    Article  CAS  Google Scholar 

  • He H, Zhou M, Yang J, Hu Y, Zhao Y (2014) Simultaneous wastewater treatment, electricity generation and biomass production by an immobilized photosynthetic algal microbial fuel cell. Bioprocess Biosyst Eng 37:873–880

    Article  CAS  PubMed  Google Scholar 

  • He L, Du P, Chen Y, Lu H, Cheng X, Chang B, Wang Z (2017) Advances in microbial fuel cells for wastewater treatment. Renew Sust Energ Rev 71:388–403

    Article  Google Scholar 

  • Heidrich ES, Edwards SR, Dolfing J, Cotterill SE, Curtis TP (2014) Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12-month period. Bioresour Technol 173:87–95

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Fernández FJ, de los Ríos AP, Salar-García MJ, Ortiz-Martínez VM, Lozano-Blanco LJ, Godínez C, Tomás-Alonso F, Quesada-Medina J (2015) Recent progress and perspectives in microbial fuel cells for bioenergy generation and waste-water treatment. Fuel Process Technol 138:284–297

    Article  CAS  Google Scholar 

  • Hideo K, Tsuzura K, Shimizu H (1991) Ion exchange membranes, ion exchangers. Walter de Gruyter, Berlin

    Google Scholar 

  • Honda R, Boonnorat J, Chiemchaisri C, Chiemchaisri W, Yamamoto K (2012) Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor. Bioresour Technol 125:59–64

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Logan BE (2008) Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl Microbiol Biotechnol 80:349–355

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Regan JM, Quan X (2011) Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102:316–323

    Article  CAS  PubMed  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  PubMed  Google Scholar 

  • Huggins T, Wang H, Kearns J, Jenkins P, Ren ZJ (2014) Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol 157:114–119

    Article  CAS  PubMed  Google Scholar 

  • Hung T, Liao S, Li C, Chen-Yang Y (2011) Effect of sulfonated carbon nanofiber-supported Pt on performance of Nafion- based self-humidifying composite membrane for proton exchange membrane fuel cell. J Power Sources 196:126–132

    Article  CAS  Google Scholar 

  • Ieropoulos I, Greenman J, Melhuish C (2009) Improved energy output levels from small-scale microbial fuel cells. Bioelectrochemistry 78:44–50

    Article  PubMed  CAS  Google Scholar 

  • Jana PS, Behera M, Ghangrekar MM (2010) Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder. Int J Hydrog Energy 35:5681–5686

    Google Scholar 

  • Jeremiasse AW, Hamelers HVM, Buisman CJN (2010) Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 78:39–43

    Article  CAS  PubMed  Google Scholar 

  • Kadier A, Simayi Y, Kalil MS, Abdeshahian P, Hamid AA (2014) A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renew Energy 71:466–472

    Article  CAS  Google Scholar 

  • Kadier A, Kalil MS, Abdeshahian P, Chandrasekhar K, Mohamed A, Azman NF, Logroño W, Simayi Y, Hamid AA (2016) Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew Sust Energ Rev 61:501–525

    Article  CAS  Google Scholar 

  • Kadier A, Kalil MS, Mohamed A, Hasan HA (2017) Microbial electrolysis cells (MECs) as innovative technology for sustainable hydrogen production: fundamentals and perspective applications. In: Sankir M, Sankir ND (eds) Hydrogen production technologies. Wiley, Hoboken, pp 407–458

    Chapter  Google Scholar 

  • Kadier A, Kalil MS, Chandrasekhar K, Mohanakrishna G (2018) Surpassing the current limitations of high purity H2 production in microbial electrolysis cell (MECs): strategies for inhibiting growth of methanogens. Bioelectrochemistry 119:211–219

    Article  CAS  PubMed  Google Scholar 

  • Kadier A, Kalil MS, Rai PK, Kumar SS, Abdeshahian P, Sivagurunathan P, Hasan HA, Hamid AA, Mohamed A (2019) Microbial electrolysis cells (MECs): a promising and green approach for bioenergy and biochemical production from waste resources, Bioelectrochemical interface engineering. Wiley, London, pp 209–234

    Google Scholar 

  • Kadier A, Al-Shorgani NKN, Jadhav DA, Sonawane JM, Mathuriya AS, Kalil MS, Hasan HA, Alabbosh KFS (2020) Microbial electrolysis cell (MEC): an innovative waste to bioenergy and value-added by-product technology. In: Bioelectrosynthesis: principles and technologies for value-added products. Wiley, New York, pp 95–128

    Chapter  Google Scholar 

  • Kakarla R, Min B (2014) Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode. Bioprocess Biosyst Eng 37:2453–2461

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan R, Krishnaraj N, Selvam A, Wong JWC, Lee PKH, Leung KH, Berchmans S (2016) Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as biocatalysts. Bioresour Technol 217:113–120

    Article  CAS  PubMed  Google Scholar 

  • Kim BH, Ikeda T, Park HS, Kim HJ, Hyun MS, Kano K, Takagi K, Tatsumi H (1999) Electrochemical activity of an Fe (III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech 13:475–478

    Article  CAS  Google Scholar 

  • Kim JR, Jung SH, Regan JM, Logan BE (2007) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol 98:2568–2577

    Article  CAS  PubMed  Google Scholar 

  • Kim JR, Dec J, Bruns MA, Logan BE (2008) Removal of odors from swine wastewater by using microbial fuel cells. Appl Environ Microbiol 74:2540–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212

    Article  CAS  PubMed  Google Scholar 

  • Kracke F, Vassilev I, Krömer JO (2015) Microbial electron transport and energy conservation–the foundation for optimizing bioelectrochemical systems. Front Microbiol 6:575

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Kumar A, Huan-Hsuan Hsu L, Kavanagh P, Barrière F, Lens PNL, Lapinsonniere L, Lienhard VJH, Schröder U, Jiang X, Leech D (2017) The ins and outs of microorganism-electrode electron transfer reactions. Nat Rev Chem 1:0024

    Article  CAS  Google Scholar 

  • Kundu A, Sahu JN, Redzwan G, Hashim MA (2013) An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int J Hydrog Energy 38:1745–1757

    Article  CAS  Google Scholar 

  • Kuntke P, Śmiech KM, Bruning H, Zeeman G, Saakes M, Sleutels THJA, Hamelers HVM, Buisman CJN (2012) Ammonium recovery and energy production from urine by a microbial fuel cell. Water Res 46:2627–2636

    Article  CAS  PubMed  Google Scholar 

  • Lakaniemi A-M, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA (2011) Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels 4:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakaniemi AM, Tuovinen OH, Puhakka JA (2012) Production of electricity and butanol from microalgal biomass in microbial fuel cells. Bioenergy Res 5:481–491

    Article  CAS  Google Scholar 

  • Larrosa-Guerrero A, Scott K, Head I, Mateo F, Ginesta A, Godinez C (2010) Effect of temperature on the performance of microbial fuel cells. Fuel 89:3985–3994

    Article  CAS  Google Scholar 

  • Laurens LML, Markham J, Templeton DW, Christensen ED, Van Wychen S, Vadelius EW, Chen-Glasser M, Dong T, Davis R, Pienkos PT (2017) Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction. Energy Environ Sci 10:1716–1738

    Article  CAS  Google Scholar 

  • Laza T, Bereczky Á (2011) Basic fuel properties of rapeseed oil- higher alcohols blends. Fuel 90:803–810

    Article  CAS  Google Scholar 

  • Lefebvre O, Ooi WK, Tang Z, Abdullah-Al-Mamun M, Chua DHC, Ng HY (2009) Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells. Bioresour Technol 100:4907–4910

    Article  CAS  PubMed  Google Scholar 

  • Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39

    Article  CAS  Google Scholar 

  • Li Z, Zhang X, Zeng Y, Lei L (2009) Electricity production by an overflow-type wetted microbial fuel cell. Bioresour Technol 100:2551–2555

    Article  CAS  PubMed  Google Scholar 

  • Li WW, Sheng GP, Liu XW, Yu HQ (2011) Recent advances in the separators for microbial fuel cells. Bioresour Technol 102:244–252

    Article  CAS  PubMed  Google Scholar 

  • Li XM, Cheng KY, Selvam A, Wong JW (2013) Bioelectricity production from acidic food waste leachate using microbial fuel cells: effect of microbial inocula. Process Biochem 48:283–288

    Article  CAS  Google Scholar 

  • Li WW, Yu HQ, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911–924

    Article  CAS  Google Scholar 

  • Li M, Pan Y, Huang L, Zhang Y, Yang J (2017) Continuous flow operation with appropriately adjusting composites in influent for recovery of Cr (VI), Cu (II) and Cd (II) in self-driven MFC–MEC system. Environ Technol 38:615–628

    Article  CAS  PubMed  Google Scholar 

  • Liang TW, Wu CC, Cheng WT, Chen YC, Wang CL, Wang IL, Wang SL (2014) Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl Biochem Biotechnol 172:933–950

    Article  CAS  PubMed  Google Scholar 

  • Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14:288–304

    Article  CAS  PubMed  Google Scholar 

  • Lindorfer H, Waltenberger R, Kollner K, Braun R, Kirchmayr R (2008) New data on temperature optimum and temperature changes in energy crop digesters. Bioresour Technol 99:7011–7019

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Cheng S, Logan BE (2005a) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Grot S, Logan BE (2005b) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu J, Zhang S, Su Z (2009) Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates. Biochem Eng J 45:185–191

    Article  CAS  Google Scholar 

  • Liu J, Liu L, Gao B (2016) The tubular MFC with carbon tube air-cathode for power generation and N, N-dimethylacetamide treatment. Environ Technol 37:762–767

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Sun L, Wan J, Tang A, Deng M, Wu R (2019) Organic matter and ammonia removal by a novel integrated process of constructed wetland and microbial fuel cells. RSC Adv 9:5384–5393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan BE (2004) Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38:160A–167A

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Regan JM (2006) Microbial fuel cells-challenges and applications. Environ Sci Technol 40:5172–5180

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Wallack MJ, Kim KY, He W, Feng Y, Saikaly PE (2015) Assessment of microbial fuel cell configurations and power densities. Environ Sci Technol Lett 2:206–214

    Article  CAS  Google Scholar 

  • Lu N, Zhou S-G, Zhuang L, Zhnag J-T, Ni J-R (2009) Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J 43:246–251

    Article  CAS  Google Scholar 

  • Lu L, Xing D, Ren N (2012) Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water Res 46:2425–2434

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Yu S, Liu G, Zhang R, Teng W (2016) Effect of in-situ immobilized anode on performance of the microbial fuel cell with high concentration of sodium acetate. Fuel 182:732–739

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Wang Z, Zhang J, Waite TD, Wu Z (2017) Cost-effective Chlorella biomass production from dilute wastewater using a novel photosynthetic microbial fuel cell (PMFC). Water Res 108:356–364

    Article  CAS  PubMed  Google Scholar 

  • Marin-Batista JD, Villamil JA, Rodriguez JJ, Mohedano AF, de la Rubia MA (2019) Valorization of microalgal biomass by hydrothermal carbonization and anaerobic digestion. Bioresour Technol 274:395–402

    Article  CAS  PubMed  Google Scholar 

  • Mashkour M, Rahimnejad M (2015) Effect of various carbon-based cathode electrodes on the performance of microbial fuel cell. Biofuel Res J 8:296–300

    Article  Google Scholar 

  • Mathimani T, Mallick N (2019) A review on the hydrothermal processing of microalgal biomass to bio-oil – knowledge gaps and recent advances. J Clean Prod 217:69–84

    Article  CAS  Google Scholar 

  • Mathimani T, Pugazhendhi A (2019) Utilization of algae for biofuel, bio-products and bio-remediation. Biocatal Agric Biotechnol 17:326–330

    Article  Google Scholar 

  • Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585

    Article  CAS  PubMed  Google Scholar 

  • Md Khudzari J, Kurian J, Gariépy Y, Tartakovsky B, Raghavan GSV (2018) Effects of salinity, growing media, and photoperiod on bioelectricity production in plant microbial fuel cells with weeping alkali-grass. Biomass Bioenergy 109:1–9

    Article  CAS  Google Scholar 

  • Mehta V, Cooper JS (2003) Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114:32–53

    Article  CAS  Google Scholar 

  • Min B, Cheng S, Logan BE (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39:1675–1686

    Article  CAS  PubMed  Google Scholar 

  • Mishra RK, Mohanty K (2018) Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol 251:63–74

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Roy M, Mohanty K (2019) Microalgal bioenergy production under zero-waste biorefinery approach: recent advances and future perspectives. Bioresour Technol 292:122008

    Article  CAS  PubMed  Google Scholar 

  • Mokhtarian N, Ramli D, Rahimnejad MM, Najafpour GD (2012) Bioelectricity generation in biological fuel cell with and without mediators. World Appl Sci J 18:559–567

    CAS  Google Scholar 

  • Molina Grima E, Belarbi EH, Acien Fernandez FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  PubMed  Google Scholar 

  • Moqsud MA, Omine K, Yasufuku N, Hyodo M, Nakata Y (2013) Microbial fuel cell (MFC) for bioelectricity generation from organic wastes. Waste Manag 33:2465

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Hottenträger S, Teske A, Waver C (1996) Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA-a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans ADL, van Elsas JD, de Bruijn F (eds) . Molecular microbial ecology manual, Kluwer, Dordrecht, pp 1–23

    Google Scholar 

  • Nagarajan D, Lee D-J, Kondo A, Chang J-S (2017) Recent insights into biohydrogen production by microalgae – from biophotolysis to dark fermentation. Bioresour Technol 227:373–387

    Article  CAS  Google Scholar 

  • Najafpour G, Rahimnejad M, Ghoreshi A (2011) The enhancement of a microbial fuel cell for electrical output using mediators and oxidizing agents. Energ Sour Part A 33:2239–2248

    Article  CAS  Google Scholar 

  • Navanietha KR, Karthikeyan R, Berchmans S, Chandran S (2013) Functionalization of electrochemically deposited chitosan films with alginate and Prussian blue for enhanced performance of microbial fuel cells. Electrochim Acta 112:465–472

    Article  CAS  Google Scholar 

  • Navarro López E, Robles Medina A, Esteban Cerdán L, González Moreno PA, Macías Sánchez MD, Molina Grima E (2016) Fatty acid methyl ester production from wet microalgal biomass by lipase-catalyzed direct transesterification. Biomass Bioenergy 93:6–12

    Article  CAS  Google Scholar 

  • Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff AL, Jia H, Zhang M, Lovley DR (2008) Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10:2505–2514

    Article  CAS  PubMed  Google Scholar 

  • Nie C, Pei H, Jiang L, Cheng J, Han F (2018) Growth of large-cell and easily-sedimentation microalgae Golenkinia SDEC-16 for biofuel production and campus sewage treatment. Renew Energy 122:517–525

    Article  CAS  Google Scholar 

  • Niessen J, Schröder U, Rosenbaum M, Scholz F (2004) Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun 6:571–575

    Article  CAS  Google Scholar 

  • Nizamuddin S, Baloch HA, Griffin GJ, Mubarak NM, Bhutto AW, Abro R, Mazari SA, Ali BS (2017) An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew Sust Energ Rev 73:1289–1299

    Article  CAS  Google Scholar 

  • Oh S, Logan B (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70:162–169

    Article  CAS  PubMed  Google Scholar 

  • Oh SE, Kim JR, Joo JH, Logan BE (2009) Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Sci Technol 60:1311–1317

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Martínez VM, Salar-García MJ, Hernández-Fernández FJ, de los Ríos AP (2015) Development and characterization of a new embedded ionic liquid-based membrane-cathode assembly for its application in single chamber microbial fuel cells. Energy 93:1748–1757

    Article  CAS  Google Scholar 

  • Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723

    Article  CAS  Google Scholar 

  • Pant D, Bogaert GV, Diels L, Vanbroekhoven K (2010a) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543

    Article  CAS  PubMed  Google Scholar 

  • Pant D, Van Bogaert G, De Smet M, Diels L, Vanbroekhoven K (2010b) Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochim Acta 55:7710–7716

    Article  CAS  Google Scholar 

  • Park DH, Zeikus JD (2002) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348–355

    Article  CAS  Google Scholar 

  • Park IH, Christy M, Kim P, Nahma KS (2014) Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell. Biosens Bioelectron 58:75–80

    Article  CAS  PubMed  Google Scholar 

  • Peighambardoust S, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell application. Int J Hydrog Energy 35:9349–9384

    Article  CAS  Google Scholar 

  • Pilon L, Berberoğlu H, Kandilian R (2011) Radiation transfer in photobiological carbon dioxide fixation and fuel production by microalgae. J Quant Spectrosc Radiat Transf 112:2639–2660

    Article  CAS  Google Scholar 

  • Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B Biol Sci 84:160–276

    Google Scholar 

  • Powell EE, Mapiour ML, Evitts RW, Hill GA (2009) Growth kinetics of Chlorella vulgaris and its use as a cathodic half-cell. Bioresour Technol 100:269–274

    Article  CAS  PubMed  Google Scholar 

  • Praveen P, Loh KC (2016) Nitrogen and phosphorus removal from tertiary wastewater in an osmotic membrane photobioreactor. Bioresour Technol 206:180–187

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Li CM, Bao SJ, Bao QL (2007) Carbon nanotube/ polyaniline composite as anode material for microbial fuel cells. Power Sources 170:79–84

    Article  CAS  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Vehaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1:9–18

    Article  CAS  PubMed  Google Scholar 

  • Raheem A, Ji G, Memon A, Sivasangar S, Wang W, Zhao M, Taufiq-Yap YH (2018) Catalytic gasification of algal biomass for hydrogen-rich gas production: parametric optimization via central composite design. Energy Convers Manag 158:235–245

    Article  CAS  Google Scholar 

  • Rahimnejad M, Mokhtarian N, Najafpour G, Daud W, Ghoreyshi A (2009) Low voltage power generation in a biofuel cell using anaerobic cultures. World Appl Sci J 6:1585–1588

    CAS  Google Scholar 

  • Rahimnejad M, Jafari T, Haghparast F, Najafpour GD, Goreyshi AA (2010) Nafion as a nanoproton conductor in microbial fuel cells. Turk J Eng Environ Sci 34:289–292

    CAS  Google Scholar 

  • Rahimnejad M, Ghoreyshi AA, Najafpour G, Jafary T (2011) Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl Energy 88:3999–4004

    Article  CAS  Google Scholar 

  • Rahimnejad M, Ghasemi M, Najafpour GD, Ghoreyshi A, Bakeri G, Hassaninejad K, Talebnia F (2012a) Acetone removal and bioelectricity generation in dual chamber microbial fuel cell. Am J Biochem Biotechnol 8:304–310

    Article  CAS  Google Scholar 

  • Rahimnejad M, Najafpour GD, Ghoreyshi AA, Talebnia F, Premier GC, Bakeri G, Kim JR, Oh S-E (2012b) Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. J Microbiol 50:575–580

    Article  CAS  PubMed  Google Scholar 

  • Rahimnejad M, Ghasemi M, Najafpour G, Ismail M, Mohammad A, Ghoreyshi A, Hasan SHA (2012c) Synthesis, characterization and application studies of self-made Fe3O4/PES nanocomposite membranes in microbial fuel cell. Electrochim Acta 15:700–706

    Article  CAS  Google Scholar 

  • Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh S-E (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alex Eng J 54:745–756

    Article  Google Scholar 

  • Rahmani AR, Navidjouy N, Rahimnejad M, Alizadeh S, Samarghandia MS, Nematollahi D (2020) Effect of different concentrations of substrate in microbial fuel cells toward bioenergy recovery and simultaneous wastewater treatment. Environ Technol. https://doi.org/10.1080/09593330.2020.1772374

  • Rashid N, Choi W, Lee K (2012) Optimization of two-staged bio-hydrogen production by immobilized Microcystis aeruginosa. Biomass Bioenergy 36:241–249

    Article  CAS  Google Scholar 

  • Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment−water interface. Environ Sci Technol 35:192–195

    Article  CAS  PubMed  Google Scholar 

  • Riffat R (2012) Fundamentals of wastewater treatment and engineering. CRC Press, New York

    Book  Google Scholar 

  • Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathodic limitations in microbial fuel cells: an overview. J. Power Sources 180:683–694

    Article  CAS  Google Scholar 

  • Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203–212

    Article  CAS  PubMed  Google Scholar 

  • Rittmann BE, McCarty PL (2001) Environmental Biotechnology: principles and applications. McGraw–Hill, New York

    Google Scholar 

  • Rittmann BE, Krajmalnik-Brown R, Halden RU (2008a) Pre-genomic, genomic and postgenomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6:604–612

    Article  CAS  PubMed  Google Scholar 

  • Rittmann BE, Torres CI, Marcus AK (2008b) Understanding the distinguishing features of a microbial fuel cell as a biomass-based renewable energy technology. In: Shah V (ed) Emerging environmental technologies. Springer, New York, pp 1–28

    Google Scholar 

  • Rosenbaum MA, Henrich AW (2014) Engineering microbial electrocatalysis for chemical and fuel production. Curr Opin Biotechnol 29:93–98

    Article  CAS  PubMed  Google Scholar 

  • Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640

    Article  PubMed  CAS  Google Scholar 

  • Ruiz J, Álvarez-Díaz PD, Arbib Z, Garrido-Pérez C, Barragán J, Perales JA (2013) Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater: prediction from a batch experiment. Bioresour Technol 127:456–463

    Article  CAS  PubMed  Google Scholar 

  • Saeed MA, Wang Q, Jin Y, Yue S, Ma H (2019) Assessment of bioethanol fermentation performance using different recycled waters of an integrated system based on food waste. Bioresources 14:3717–3730

    CAS  Google Scholar 

  • Salar-García MJ, Gajda I, Ortiz-Martínez VM, Greenman J, Hanczyc MM, de los Ríos AP, Ieropoulos I (2016) Microalgae as substrate in low cost terracotta-based microbial fuel cells: novel application of the catholyte produced. Bioresour Technol 209:380–385

    Article  PubMed  CAS  Google Scholar 

  • Sallez Y, Bianco P, Lojou E (2000) Electrochemical behavior of c- type cytochromes at clay-modified carbon electrodes: a model for the interaction between proteins and soils. J Electroanal Chem 493:37–49

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Pugazhendhi A, Pugazhendhi A, Zhen G, Kumar G, Kadier A, Sivagurunathan P (2017) Microbiome involved in microbial electrochemical systems (MESs): a review. Chemosphere 177:176–188

    Article  CAS  PubMed  Google Scholar 

  • Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629

    Article  PubMed  Google Scholar 

  • Scott K, Rimbu GA, Katuri KP, Prasad Head IM (2007) Application of modified carbon anodes in microbial fuel cells. Process Saf Environ 85:481–488

    Article  CAS  Google Scholar 

  • Sharma Y, Li B (2010) The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresour Technol 101:1844–1850

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Singh P (2014) Effect of CO2 concentration on algal growth: a review. Renew Sust Energ Rev 38:172–179

    Article  CAS  Google Scholar 

  • Skorupskaite V, Makareviciene V, Gumbyte M (2016) Opportunities for simultaneous oil extraction and transesterification during biodiesel fuel production from microalgae: a review. Fuel Process Technol 150:78–87

    Article  CAS  Google Scholar 

  • Solovchenko A, Verschoor AM, Jablonowski ND, Nedbal L (2016) Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotechnol Adv 34:550–564

    Article  CAS  PubMed  Google Scholar 

  • Sotres A, Cerrillo M, Viñas M, Bonmatí A (2016) Nitrogen removal in a two-chambered microbial fuel cell: establishment of a nitrifying–denitrifying microbial community on an intermittent aerated cathode. Chem Eng J 284:905–916

    Article  CAS  Google Scholar 

  • Srikanth S, Venkata Mohan S (2012) Change in electrogenic activity of the microbial fuel cell (MFC) with the function of biocathode microenvironment as terminal electron accepting condition: influence on overpotentials and bio-electro kinetics. Bioresour Technol 119:241–251

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Hu Y, Bi Z, Cao Y (2009) Improved performance of air cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation. J Power Sources 187:471–479

    Article  CAS  Google Scholar 

  • Sun M, Zhai LF, Li WW, Yu HQ (2016) Harvest and utilization of chemical energy in wastes by microbial fuel cells. Chem Soc Rev 45:2847–2870

    Article  CAS  PubMed  Google Scholar 

  • Sund C, McMasters S, Crittenden S, Harrell L, Sumner J (2007) Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl Microbiol Biotechnol 76:561–568

    Article  CAS  PubMed  Google Scholar 

  • Tan CH, Show PL, Chang JS, Ling TC, Lan JCW (2015) Novel approaches of producing bioenergies from microalgae: a recent review. Biotechnol Adv 33:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Tardast A, Rahimnejad M, Najafpour G, Ghoreyshi AA, Zare H (2012) Fabrication and operation of a novel membrane-less microbial fuel cell as a bioelectricity generator. Int J Environ Eng 3:1–5

    Google Scholar 

  • Tchobanoglous G, Burton FL (1991) Wastewater engineering: treatment and reuse. McGraw–Hill, New York

    Google Scholar 

  • Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825

    Article  CAS  PubMed  Google Scholar 

  • Ter Heijne A, Hamelers HVM, De Wilde V, Rozendal RA, Buisman CJN (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cell. Environ Sci Technol 40:5200–5205

    Article  PubMed  CAS  Google Scholar 

  • TerAvest MA, Ajo-Franklin CM (2015) Transforming exoelectrogens for biotechnology using synthetic biology. Biotechnol Bioeng 113:687–697

    Article  PubMed  CAS  Google Scholar 

  • Tice RC, Kim Y (2014) Methanogenesis control by electrolytic oxygen production in microbial electrolysis cells. Int J Hydrog Energy 39:3079–3086

    Article  CAS  Google Scholar 

  • Torres CI, Marcus AK, Lee H-S, Parmeswaran P, Krajmalnik-Brown R, Rittman BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34:3–17

    Article  CAS  PubMed  Google Scholar 

  • Tse HT, Luo S, Li J, He Z (2016) Coupling microbial fuel cells with a membrane photobioreactor for wastewater treatment and bioenergy production. Bioprocess Biosyst Eng 39:1703–1710

    Article  CAS  PubMed  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  PubMed  Google Scholar 

  • Varanasi JL, Veerubhotla R, Pandit S, Das D (2019) Biohydrogen production using microbial electrolysis cell. Microb Electrochem Technol 2019:843–869

    Article  Google Scholar 

  • Velasquez-Orta SB, Curtis TP, Logan BE (2009) Energy from algae using microbial fuel cells. Biotechnol Bioeng 103:1068–1076

    Article  CAS  PubMed  Google Scholar 

  • Venkata Mohan S, Velvizhi G, Annie Modestra J, Srikanth S (2014) Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sust Energ Rev 40:779

    Article  CAS  Google Scholar 

  • Virdis B, Read ST, Rabaey K, Rozendal RA, Yuan Z, Keller J (2011) Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. Bioresour Technol 102:334–341

    Article  CAS  PubMed  Google Scholar 

  • Vitova M, Bisova K, Kawano S, Zachleder V (2015) Accumulation of energy reserves in algae: from cell cycles to biotechnological applications. Biotechnol Adv 33:1204–1218

    Article  PubMed  Google Scholar 

  • Von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2007) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623

    Article  CAS  Google Scholar 

  • Wang A, Liu L, Sun D, Ren N, Lee DJ (2010) Isolation of Fe (III)-reducing fermentative bacterium Bacteroides sp. W7 in the anode suspension of a microbial electrolysis cell (MEC). Int J Hydrog Energy 35:3178–3182

    Article  CAS  Google Scholar 

  • Wang H, Luo H, Fallgren PH, Jin S, Ren ZJ (2015) Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol Adv 33:317–334

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Zhai Y, Zhu Y, Li C, Zeng G (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sust Energ Rev 90:223–247

    Article  CAS  Google Scholar 

  • Watanabe KJ (2008) Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106:528–536

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102:9335–9344

    Article  CAS  PubMed  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, He Z (2014) Applications and perspectives of phototrophic microorganisms for electricity generation from organic compounds in microbial fuel cells. Renew Sust Energ Rev 37:550–559

    Article  CAS  Google Scholar 

  • Xiao L, Young EB, Berges JA, He Z (2012) Integrated photo- bioelectrochemical system for contaminants removal and bioenergy production. Environ Sci Technol 46:11459–11466

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Young EB, Grothjan JJ, Lyon S, Zhang H, He Z (2016) Wastewater treatment and microbial community in an integrated photo-bioelectrochemical system affected by different wastewater algal inocula. Algal Res 12:446–454

    Article  Google Scholar 

  • Xu J, Sheng GP, Luo HW, Li WW, Wang LF, Yu HQ (2012) Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Res 46:1817–1824

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Poon K, Choi MMF, Wang R (2015) Using live algae at the anode of a microbial fuel cell to generate electricity. Environ Sci Pollut Res Int 22:15621–15635

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Li R, Zhang B, Qiu Q, Wang B, Yang H, Ding Y, Wang C (2019) Pyrolysis of microalgae: a critical review. Fuel Process Technol 186:53–72

    Article  CAS  Google Scholar 

  • Ye Y, Ngo HH, Guo W, Liu Y, Chang SW, Nguyen DD, Ren J, Liu Y, Zhang X (2018) Feasibility study on a double chamber microbial fuel cell for nutrient recovery from municipal wastewater. Chem Eng J 358:236–242

    Article  CAS  Google Scholar 

  • Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N, del Giorgio PA (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–491

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Angelidaki I (2014) Microbial electrolysis cells turning to be versatile technology: Recent advances and future challenges. Water Res 56:11

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zeng Y, Chen S, Ai X, Yang H (2007) Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes. Electrochem Commun 9:349–353

    Article  CAS  Google Scholar 

  • Zhang X, Cheng S, Wang X, Huang X, Logan BE (2009) Separator characteristics for increasing performance of microbial fuel cells. Environ Sci Technol 43:8456–8461

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Noori JS, Angelidaki I (2011) Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energy Environ Sci 4:4340–4346

    Article  CAS  Google Scholar 

  • Zhang G, Zhao Q, Jiao Y, Lee DJ, Ren N (2012) Efficient electricity generation from sewage sludge using biocathode microbial fuel cell. Water Res 46:43–52

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Bai Y, Fan Y, Hou H (2016) Improved bio-hydrogen production from glucose by adding a specific methane inhibitor to microbial electrolysis cells with a double anode arrangement. J Biosci Bioeng 122:488–493

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Wang C, Cao G, Chen W-H, Ho S-H (2019) Comparison and characterization of property variation of microalgal biomass with non-oxidative and oxidative torrefaction. Fuel 246:375–385

    Article  CAS  Google Scholar 

  • Zhao L, Lv M, Tang Z, Tang T, Shan Y, Pan Z, Sun Y (2018) Enhanced photo bioreaction by multiscale bubbles. Chem Eng J 354:304–313

    Article  CAS  Google Scholar 

  • Zheng X, Nirmalakhandan N (2010) Cattle wastes as substrates for bioelectricity production via microbial fuel cells. Biotechnol Lett 32:1809–1814

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Chi M, Luo J, He H, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427–4435

    Article  CAS  Google Scholar 

  • Zhou M, Jin T, Wu Z, Chi M, Gu T (2012) Microbial fuel cells for bioenergy and bioproducts. In: Sustainable bioenergy and bioproducts. Springer, New York, pp 131–171

    Chapter  Google Scholar 

  • Zhou M, Yang J, Wang H, Jin T, Hassett DJ, Gu T (2013) Bioelectrochemistry of microbial fuel cells and their potential applications in bioenergy. Bioenergy Res Adv Appl 206:131–153

    Google Scholar 

  • Zhuang L, Zhou S, Wang Y, Liu C, Geng S (2009) Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells. Biosens Bioelectron 24:3652–3656

    Article  CAS  PubMed  Google Scholar 

  • Zhuang L, Zheng Y, Zhou S, Yuan Y, Yuan H, Chen Y (2012) Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment. Bioresour Technol 106:82–88

    Article  CAS  PubMed  Google Scholar 

  • Zuo Y, Cheng S, Logan B (2008) Ion exchange membrane cathodes for scalable microbial fuel cells. Environ Sci Technol 42:6967–6972

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to express my heartfelt gratitude to Gábor Draskovits, Laboratory Researcher, Dr. József Marek Animal Health Laboratory, Prophyl Kft., Dózsa György út 18, Mohács-7700, Hungary for sharing his innovative ideas, continuous moral support and motivation in writing this chapter. I would also like to convey a note of thanks to Prof. (Dr.) Pramod W. Ramteke (now retired), former Dean PG Studies and Head, Department of Biological Sciences, Faculty of Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj-211007, UP, India. Last but not the least, wisdom shared by Dr. Pradeep Kumar Shukla, Assistant Professor, Department of Biological Sciences, Faculty of Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj-211007, UP, India cannot be ignored as he has always been a source of inspiration to me.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurice, N. (2021). Bioenergy Production: Opportunities for Microorganisms (Part I). In: Srivastava, M., Srivastava, N., Singh, R. (eds) Bioenergy Research: Commercial Opportunities & Challenges . Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-1190-2_1

Download citation

Publish with us

Policies and ethics