Skip to main content

Biological Activity of Allelochemicals

  • Chapter
  • First Online:
Plant-derived Natural Products

Abstract

All plants produce compounds that are phytotoxic to another plant species at some concentration. In some cases, these compounds function, at least in part, in plant/plant interactions, where a phytotoxin donor plant adversely affects a target plant, resulting in an advantage for the donor plant. This review discusses how such an allelochemical role of a phytotoxin can be proven and provides examples of some of the more studied phytochemicals that have been implicated in allelopathy. These include artemisinin, cineoles, β-triketones, catechin, sorgoleone, juglone and related quinones, rice allelochemicals, benzoxazinoids, common phenolic acids, l-DOPA, and m-tyrosine. Mechanisms of avoiding autotoxicity in the donor species are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rice, E.L. (1984) Allelopathy, 2nd Edition. Academic Press, Orlando, FL

    Google Scholar 

  2. Duke, S.O. et al (2006) Hormesis: Is it an important factor in herbicide use and allelopathy? Outlooks Pest. Manag. 17, 29–33

    Google Scholar 

  3. Belz, R.G. et al (2007) Dose/response relationships in allelopathy research. In Allelopathy: New concepts and methodology (Fuji, Y. and Hiradate, S. eds). Science Publishers, Enfield, NH, pp. 3–29

    Google Scholar 

  4. Bonanomi, G. et al (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol. 169, 571–578

    Article  PubMed  CAS  Google Scholar 

  5. Tharayil, N. et al (2008) Bioavailability of allelochemicals as affected by companion compounds in soil matrices. J. Agric. Food Chem. 56, 3706–3713

    Article  PubMed  CAS  Google Scholar 

  6. Müller, C.H. et al (1964) Volatile growth inhibitors produced by aromatic shrubs. Science 143, 471–473

    Article  PubMed  Google Scholar 

  7. Bartholomew, B. (1970) Bare zone between California shrub and grassland communities: The role of animals. Science 170, 1210–1212

    Article  PubMed  CAS  Google Scholar 

  8. Belz, R.G. (2007) Allelopathy in crop/weed interactions – an update. Pest Manag. Sci. 63, 308–326

    Article  PubMed  CAS  Google Scholar 

  9. Blum, U. et al (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Crit. Rev. Plant Sci. 18, 673–693

    Article  CAS  Google Scholar 

  10. Blum, U. et al (1991) Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. J. Chem. Ecol. 17, 1045–1068

    Article  CAS  Google Scholar 

  11. Devine, M.D. et al (1993) Physiology of herbicide action. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  12. Cheng, H.H. (1995) Characterization of the mechanisms of allelopathy: Modeling and experimental approaches. Am. Chem. Soc. Symp. Ser. 582, 132–141

    CAS  Google Scholar 

  13. Einhellig, F.A. et al (1983) Synergistic effects of four cinnamic acid compounds on grain sorghum. J. Plant Growth Regul. 1, 251–258

    CAS  Google Scholar 

  14. Duke, S.O. et al (1983) Interaction of moisture stress and three phenolic compounds on lettuce seed germination. Ann. Bot. 52, 923–926

    CAS  Google Scholar 

  15. Inderjit et al (2002) Joint action of phenolic acid mixtures and its significance in allelopathy research. Physiol. Plant. 114, 422–428

    Article  CAS  Google Scholar 

  16. Duke, S.O. et al (2003) Herbicides: Glyphosate. In Encyclopedia of Agrochemicals (Plimmer, J.R., Gammon, D.W., Ragsdale, N.N. eds). Wiley, New York http://www.mrw.interscience.wiley.com/eoa/articles/agr119/frame.html

    Google Scholar 

  17. Duke, S.O. and Oliva, A. (2004) Mode of action of phytotoxic terpenoids. In Allelopathy: Chemistry and mode of action of allelochemicals (Macías, F.A. et al. eds). CRC Press, Boca Raton, FL, pp. 201–216

    Google Scholar 

  18. Duke, S.O. and Dayan, F.E. (2006) Modes of action of phytotoxins from plants. In Allelopathy: A physiological process with ecological implications (Reigosa, M. et al., eds), Springer, Amsterdam, The Netherlands, pp. 511–536

    Google Scholar 

  19. Tellez, M.R. et al (2002) Terpenoid-based defense in plants and other organisms. In Lipid Biotechnology (Kuo, T.M. and Gardner, H.W. eds). Marcel Dekker, New York, pp. 319–355

    Google Scholar 

  20. Bagchi, G.D. et al (1997) Arteether: a potent plant growth inhibitor from Artemisia annua, Phytochemistry 45, 1131–1133

    Article  Google Scholar 

  21. Duke, S.O. et al (1987) Artemisinin, a constituent of annual wormwood (Artemisia annua), is a selective phytotoxin. Weed Sci. 35, 499–505

    CAS  Google Scholar 

  22. Dayan, F.E. et al (1999) Comparative phytotoxicity of artemisinin and several sesquiterpene analogues. Phytochemistry 50, 607–614

    Article  CAS  Google Scholar 

  23. Lydon, J. et al (1997) Allelopathic activity of annual wormwood (Artemisia annua) and the role of artemisinin. Weed Sci. 45, 807–811

    CAS  Google Scholar 

  24. Escudero, A. et al (2000) Inhibitory effects of Artemisia herba-alba on the germination of the gypsophyte Helianthemum squamatum. Plant Ecol. 148, 71–80

    Article  Google Scholar 

  25. Karban, R. (2007) Experimental clipping of sagebrush inhibits seed germination of neighbours. Ecol. Lett. 10, 791–797

    Article  PubMed  Google Scholar 

  26. Barney, J.N. et al (2005) Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J. Chem. Ecol. 31, 247–265

    Article  PubMed  CAS  Google Scholar 

  27. Duke, S.O. et al (1988) Terpenoids from the genus Artemisia as potential pesticides. Amer. Chem. Soc. Symp. Ser. 380, 318–334

    CAS  Google Scholar 

  28. Chen, P.K. and Leather, G.R. (1990) Plant growth regulatory activities of artemisinin and its related compounds. J. Chem. Ecol. 16, 1867–1876

    Article  CAS  Google Scholar 

  29. DiTomaso, J.M. and Duke, S.O. (1991) Is polyamine biosynthesis a possible site of action of cinmethylin and artemisinin? Pestic. Biochem. Physiol. 39, 158–167

    Article  CAS  Google Scholar 

  30. Bajsa, J. et al (2007) A survey of synthetic and natural phytotoxic compounds and phytoalexins as potential antimicrobial compounds. Biol. Pharm. Bull. 30, 1740–1744

    Article  PubMed  CAS  Google Scholar 

  31. Drew, M.G.B. et al (2006) Reactions of artemisinin and arteether with acid: Implications for stability and mode of action of antimalarial action. J. Med. Chem. 49, 6065–6073

    Article  PubMed  CAS  Google Scholar 

  32. Posner, G.H. and O’Neill, P.M. (2004) Knowledge of the proposed mechanism of action and cytochrome P450 metabolism of antimalarial trioxanes like artemisinin allows rational design of new antimalarial peroxides. Accounts Chem. Res. 37, 397–404

    Article  CAS  Google Scholar 

  33. Stocks, P.A. et al (2007) Evidence for a common non-heme chelatable-iron-dependent activation mechanism for semisynthetic and synthetic endoperoxide antimalarial drugs. Angew. Chem. 46, 6278–6283

    Article  CAS  Google Scholar 

  34. Mishina, Y.V. et al (2007) Artemisinins inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense in vitro growth. Antimicrob. Agents Chemother. 51, 1852–1854

    Article  PubMed  CAS  Google Scholar 

  35. Nagamune, K. et al (2007) Artemisinin induces calcium-dependent protein secretion in the protozoan parasite Toxoplasma gondii. Eukar. Cell 6, 2147–2156

    Article  CAS  Google Scholar 

  36. Müller, W.H. and Müller, C.H. (1964) Volatile growth inhibitors produced by Salvia species. Bull. Torrey Bot. Club 91, 327–330

    Article  Google Scholar 

  37. Halligan, J.P. (1975) Toxic terpenes from Artemisia californica. Ecology 56, 999–1003

    Article  CAS  Google Scholar 

  38. Vaughn, S.F. and Spencer, G.F. (1993) Volatile monoterpenes as potential parent structures for new herbicides. Weed Sci. 41, 114–119

    CAS  Google Scholar 

  39. Romagni, J.G. et al (2000) Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 26, 303–313

    Article  CAS  Google Scholar 

  40. Vaughn, S.F. and Spencer, G.F. (1996) Synthesis and herbicidal activity of modified monoterpenes structurally similar to cinmethylin. Weed Sci. 44, 7–11

    CAS  Google Scholar 

  41. Douglas, M.H. et al (2004) Essential oils from New Zealand manuka: triketone and other chemotypes of Leptospermum scoparium. Phytochemistry 65, 1255–1264

    Article  PubMed  CAS  Google Scholar 

  42. Hellyer, R.O. (1968) The occurrence of β-triketones in the steam-volatile oils of some myrtaceous Australian plants. Austral. J. Chem. 21, 2825–2828

    Article  CAS  Google Scholar 

  43. Lee, D.L. et al (1997) The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci. 45, 601–609

    CAS  Google Scholar 

  44. Dayan, F.E. et al (2007) p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for β-triketones from Leptospermum scoparium. Phytochemistry 68, 2004–2014

    Article  PubMed  CAS  Google Scholar 

  45. Neidig, M.L. et al (2005). Spectroscopic and computational studies of NTBC bound to the non-heme iron enzyme (4-hydroxyphenyl) pyruvate dioxygenase: active site contributions to drug inhibition. Biochem. Biophys. Res. Commun. 338, 206–214

    Article  PubMed  CAS  Google Scholar 

  46. Bais, H.P. et al (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interaction. Science 301, 1377–1380

    Article  PubMed  CAS  Google Scholar 

  47. Bais, H.P. et al (2005) Enantiomeric-dependent phytotoxic and anti-microbial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol. 128, 1173–1179

    Article  CAS  Google Scholar 

  48. Weir, T.L. et al (2003) Intraspecific and interspecific interactions mediated by a phytotoxin (–)-catechin, secreted by the roots of Centauria maculosa (spotted knapweed). J. Chem. Ecol. 29, 2397–2412

    Article  PubMed  CAS  Google Scholar 

  49. Veluri, R. et al (2004) Phytotoxic and antimicrobial activities of catechin derivatives. J. Agric. Food Chem. 52, 1077–1082

    Article  PubMed  CAS  Google Scholar 

  50. Perry, L.G. and Vivanco, J.M. (2005) Dual role for an allelochemical: (±)-catechin from Centauria maculosa root exudates regulates conspecific seedling establishment. J. Ecol. 93, 1126–1135

    Article  CAS  Google Scholar 

  51. Thelen, C.C. et al (2005) Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecol. Lett. 8, 209–217

    Article  Google Scholar 

  52. Callaway, R.M. and Ridenour, W.M. (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2, 436–443

    Article  Google Scholar 

  53. Blair, A.C. et al (2005) New techniques and findings in the study of a candidate allelochemical implicated in invasion success. Ecol. Lett. 8, 1039–1047

    Article  Google Scholar 

  54. Blair, A.C. et al (2006) A lack of evidence for an ecological role of the putative allelochemical (±)-catechin in Centauria maculosa invasion process. J. Chem. Ecol. 32, 2327–2331

    Article  PubMed  CAS  Google Scholar 

  55. Inderjit et al (2006) Can plant biochemistry contribute to understanding of invasion ecology. Trends Plant Sci. 11, 574–580

    Article  PubMed  CAS  Google Scholar 

  56. Perry, L.G. et al (2007) Concentrations of the allelochemical (±)-catechin in Centaurea maculosa soils. J. Chem. Ecol. 33, 2337–2344

    Article  PubMed  CAS  Google Scholar 

  57. Furubayashi, A. et al (2007) Role of catechol structure in the adsorption and transformation reactions of l-DOPA in soils. J. Chem. Ecol. 33, 239–250

    Article  PubMed  CAS  Google Scholar 

  58. Broeckling, C.D. and Vivanco, J.M. (2008) A selective, sensitive, and rapid in-field assay for soil catechin, an allelochemical of Centauria maculosa. Soil Biol. Biochem. 40, 1189–1196

    Article  CAS  Google Scholar 

  59. Prithiviraj, B. et al (2007) Chemical facilitation and induced pathogen resistance mediated by root-secreted phytotoxin. New Phytol. 173, 852–860

    Article  PubMed  CAS  Google Scholar 

  60. Duke, S.O. et al (2007) Interactions of synthetic herbicides with plant disease and microbial herbicides. In Novel biotechnologies for biocontrol agent enhancement and management (Vurro, M. and Gressel, J. eds)., Springer, Dordrecht, The Netherlands, pp. 277–296

    Chapter  Google Scholar 

  61. Weir, T.L. et al (2006) Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa. Planta 223, 785–795

    Article  PubMed  CAS  Google Scholar 

  62. Almajano, M.P. et al (2007) Albumin causes a synergistic increase in the antioxidant activity of green tea catechins in oil-in-water emulsions. Food. Chem. 102, 1375–1382

    Article  CAS  Google Scholar 

  63. Qin, B. et al (2007) No evidence for root-mediated allelopathy in Centaurea solstitialis, a species in a commonly allelopathic genus. Biolog. Invasions 9, 897–907

    Article  Google Scholar 

  64. Romeo, J.T. (2000) Raising the beam: moving beyond phytotoxicity. J. Chem. Ecol. 26, 2011–2014

    Article  CAS  Google Scholar 

  65. D’Abrosca, B. et al (2006) Chemical constituents of the aquatic plant Schoenoplectus lacustris: Evaluation of phytotoxic effects on the green alga Selanastrum capricornutum. J. Chem. Ecol. 32, 81–96

    Article  PubMed  CAS  Google Scholar 

  66. Breazeale, J.F. (1924) The injurious after-effects of sorghum. J. Am. Soc. Agron. 16, 689–700

    Article  CAS  Google Scholar 

  67. Weston, L.A. (1996) Utilization of allelopathy for weed management in agroecosystems. Agron. J. 88, 860–866

    Article  Google Scholar 

  68. Czarnota, M.A. et al (2003) Anatomy of sorgoleone-secreting root hairs of Sorghum species. Internat. J. Plant. Sci. 164, 861–866

    Article  Google Scholar 

  69. Vasilakoglou, I. et al (2005) Allelopathic potential of bermudagrass and johnsongrass and their interference with cotton and corn. Agron. J. 97, 303–313

    Google Scholar 

  70. Netzly, D.H. and Butler, L.G. (1986) Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26, 775–778

    Article  CAS  Google Scholar 

  71. Gimsing, A.L. et al. (2009) Mineralization of the allelochemical sorgoleone in soil, Chemo­sphere, in press

    Google Scholar 

  72. Einhellig, F.A. and Souza, I.F. (1992) Phytotoxicity of sorgoleone found in grain sorghum root exudates. J. Chem. Ecol. 18, 1–11

    Article  CAS  Google Scholar 

  73. Rimando, A.M. et al (1998) A new photosystem II electron transfer inhibitor from Sorghum bicolor. J. Nat. Prod. 61, 927–930

    Article  PubMed  CAS  Google Scholar 

  74. de Almeida Barbosa, L.C. et al (2001) Preparation and phytotoxicity of sorgoleone analogues. Quim. Nova 24, 751–755

    Article  Google Scholar 

  75. Einhellig, F.A. et al (1993) Effects of root exudate sorgoleone on photosynthesis. J. Chem. Ecol. 19, 369–375

    Article  CAS  Google Scholar 

  76. Gonzalez, V.M. et al (1997) Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J. Agric. Food Chem. 45, 1415–1421

    Article  CAS  Google Scholar 

  77. Rasmussen, J.A. et al (1992) Sorgoleone from root exudate inhibits mitochondrial functions. J. Chem. Ecol. 18, 197–207

    Article  CAS  Google Scholar 

  78. Meazza, G. et al (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 59, 281–288

    Article  Google Scholar 

  79. Hejl, A.M. and Koster, K.L. (2004) The allelochemical sorgoleone inhibits root H++--ATPase and water uptake. J. Chem. Ecol. 30, 2181–2191

    Article  CAS  Google Scholar 

  80. Czarnota, M.A. et al (2003) Evaluation of seven sorghum (Sorghum sp.) accessions. J. Chem. Ecol. 29, 2073–2083

    Article  PubMed  CAS  Google Scholar 

  81. Dayan, F.E. (2006) Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta 224, 339–346.

    Article  PubMed  CAS  Google Scholar 

  82. Yang, X. et al (2004) Manipulation of root hair development and sorgoleone production in sorghum seedlings. J. Chem. Ecol. 30, 199–213

    Article  PubMed  CAS  Google Scholar 

  83. Fate, G.D. and Lynn, D.G. (1996) Xenognosin methylation is critical in defining the chemical potential gradient that regulates the spatial distribution in Striga pathogenesis. J. Am. Chem. Soc. 118, 11369–11376

    Article  CAS  Google Scholar 

  84. Kagan, I.A. et al (2003) Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor. J. Agric. Food Chem. 51, 7589–7595

    Article  PubMed  CAS  Google Scholar 

  85. Dayan, F.E. et al (2003) Podophyllum peltatum possesses a β-glucosidase with high substrate specificity for the aryltetralin lignan podophyllotoxin. Biochem. Biophys. Act. 1646, 157–163

    CAS  Google Scholar 

  86. Dayan, F.E. et al (2007) Biosynthesis of lipid resorcinols and benzoquinones in isolated secretory plant root hairs. J. Exp. Bot. 58, 3263–3272

    Article  PubMed  CAS  Google Scholar 

  87. Baerson, S.R. et al (2006) A functional genomics approach for the identification of genes involved in the biosynthesis of the allelochemical sorgoleone. Amer. Chem. Symp. Ser. 927, 265–276

    Article  CAS  Google Scholar 

  88. Baerson, S.B. et al (2008) A functional genomics investigation of allelochemical bioysynthesis in Sorghum bicolor root hairs. J. Biol. Chem. 83, 3231–3247

    Google Scholar 

  89. Cook, D. et al (2007) Molecular and biochemical characterization of a novel polyketide synthase likely to be involved in the biosynthesis of sorgoleone. Am. Chem. Soc. Symp. Ser. 955, 141–151

    CAS  Google Scholar 

  90. Pan, Z. et al (2007) Functional characterization of desaturases involved in the formation of the terminal double bond of an unusual 16:3Δ9,12,15 fatty acid isolated from Sorghum bicolor root hairs. J. Biol. Chem. 282, 4326–4335

    Article  PubMed  CAS  Google Scholar 

  91. Topal, S. et al (2007) Herbicidal effects of juglone as an allelochemical. Phyton 46, 259–269

    CAS  Google Scholar 

  92. Reynolds, T. (1987) Comparative effects of alicyclic compounds and quinones on inhibition of lettuce fruit germination. Ann. Bot. 60, 215–223

    CAS  Google Scholar 

  93. Meyer, J.J.M. et al (2007) Identification of plumbagin epoxide as a germination inhibitory compound through a rapid bioassay on TLC. South Afric. J. Bot. 73, 654–656

    Article  CAS  Google Scholar 

  94. Jose, S. and Gillespie, A.R. (1998) Allelopathy in black walnut (Juglans nigra L.) alley cropping. I. Spatio-temporal variation in soil juglone in a black walnut-corn (Zea mays L.) alley cropping system in the midwestern USA. Plant Soil 203, 191–197

    Article  CAS  Google Scholar 

  95. Jose, S. and Gillespie, A.R. (1998) Allelopathy in black walnut (Juglans nigra L.) alley cropping. II. Effects of juglone on hydroponically grown corn (Zea mays L.) and soybean (Glycine max L. Merr.) growth and physiology. Plant Soil 203, 199–205

    Article  CAS  Google Scholar 

  96. Hejl, A.M. et al (1993) Effects of juglone on growth, photosynthesis, and respiration. J. Chem. Ecol. 19, 559–568

    Article  CAS  Google Scholar 

  97. Koeppe, D.E. (1972) Reactions of isolated corn mitochondria influenced by juglone. Physiol. Plant. 27, 89–94

    CAS  Google Scholar 

  98. Bohm, P.A.F. et al (2006) Peroxidase activity and lignification in soybean root growth-inhibition by juglone. Biol. Plant 50, 315–317

    Article  CAS  Google Scholar 

  99. Hejl, A.M. and Koster, K.L. (2004) Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). J. Chem. Ecol. 30, 453–471

    Article  PubMed  CAS  Google Scholar 

  100. Dansette, P. and Azerad, R. (1970) New intermediate in naphthoquinone and menaquinone biosynthesis. Biochem. Biophysic. Res. Comm. 40, 1090–1095

    Article  CAS  Google Scholar 

  101. Müller, W.U. and Leistner, E. (1976) Naphthoquinone, an intermediate in juglone (5-hydroxy-1,4-naphthoquinone) biosynthesis. Phytochemistry 15, 407–410

    Article  Google Scholar 

  102. Jose, S. (2002) Black walnut allelopathy: current state of the science. In Chemical Ecology of Plants: Allelopathy in aquatic and terrestrial ecosystems (Inderjit and Mallik, A.U. eds). Birkhauser- Verlag AG, Basel, Swizerland, pp. 149–172

    Chapter  Google Scholar 

  103. von Kiparski, G.R. et al (2007) Occurrence and fate of the phytotoxin juglone in alley soils under black walnut trees. J. Environ. Qual. 36, 709–717

    Article  PubMed  CAS  Google Scholar 

  104. Weidenhamer, J.D. and Romeo, J.T. (2004) Allelochemicals of Polygonella myriophylla: Chemistry and soil degradation. J. Chem. Ecol. 30, 1067–1082

    Article  PubMed  CAS  Google Scholar 

  105. Olofsdotter, M. et al (2002) Improving crop competitive ability using allelopathy – an example from rice. Plant Breed. 121, 1–9

    Article  Google Scholar 

  106. Dilday, R.H. et al (2001) Allelopathic potential in rice germplasm against ducksalad, redstem and barnyardgrass. J. Crop Prod. 4, 287–301

    Article  Google Scholar 

  107. Kong, C. et al (2002) Using specific secondary metabolites as markers to evaluate allelopathic potentials of rice varieties and individual plants. Chin. Sci. Bull. 47, 839–843

    Article  CAS  Google Scholar 

  108. Jensen, L.B. et al (2001) Locating genes controlling allelopathic effects against barnyardgrass in upland rice. Agron. J. 93, 21–26

    Article  CAS  Google Scholar 

  109. Kong, C. et al (2004) Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry 65, 1123–1128

    Article  PubMed  CAS  Google Scholar 

  110. Gealy, D.R. et al (2003) Rice cultivar differences in suppression of barnyardgrass (Echinochloa crus-galli) and economics of reduced propanil rates. Weed Sci. 51, 601–609

    Article  CAS  Google Scholar 

  111. Courtois, B. and Olofsdotter, M. (1998) Incorporating the allelopathy trait in upland rice breeding programs. In Proceedings of the Workshop on Allelopathy in Rice (Olofsdotter, M., ed). Manila, Philippines, pp. 57–68

    Google Scholar 

  112. Olofsdotter, M. (2001) Getting closer to breeding for competitive ability and the role of allelopathy – An example from rice (Oriza sativa). Weed Technol. 15, 798–806

    Article  CAS  Google Scholar 

  113. Kato-Noguchi, H. and Ino, I. (2004) Release level of momilactone B from rice plants. Plant Product. Sci. 7, 189–90

    Article  CAS  Google Scholar 

  114. Bouillant, M.L. et al (1994) Identification of 5-(12-heptadecenyl)-resorcinol in rice root exudates. Phytochemistry 35, 769–771

    Article  CAS  Google Scholar 

  115. VanEtten, H.D. et al (1994) Two classes of plant antibiotics: phytoalexins versus ‘phytoanticipins’. Plant Cell 6, 1191–1192

    Article  PubMed  CAS  Google Scholar 

  116. Kozubek, A. and Tyman, J.H.P. (1999) Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 99, 1–25

    Article  PubMed  CAS  Google Scholar 

  117. Kong, C. et al (2004) Release and activity of allelochemicals from allelopathic rice seedlings. J. Agric. Food Chem. 52, 2861–2865

    Article  PubMed  CAS  Google Scholar 

  118. Sicker, D. et al (2004) Benzoxazolin-2(3H)-ones - Generation, effects and detoxification in the competition among plants. In Allelopathy: Chemistry and mode of action of allelochemicals (Macías, F.A. et al, eds). CRC Press, Boca Raton, FL, pp. 77–102

    Google Scholar 

  119. Fomsgaard, I.S. (2006) Chemical ecology in wheat plant-pest interactions. How the use of modern techniques and a multidisciplinary approach can throw new light on a well-known phenomenon: Allelopathy. J. Agric. Food Chem. 54, 987–990

    Article  PubMed  CAS  Google Scholar 

  120. Macías, F.A. et al (2007) Allellopathy – a natural alternative for weed control. Pest Manag. Sci. 63, 327–348

    Article  PubMed  CAS  Google Scholar 

  121. Schulz, M. et al (1994) Allelopathic effects of living quackgrass (Agropyron repens L.). Identification of inhibitory allelochemicals exuded fro rhizome borne roots. Angew. Bot. 68, 195–200

    CAS  Google Scholar 

  122. Chiapusio, G. et al (1997) Do germination indices adequately reflect allelochemical effects on the germination process? J. Chem. Ecol. 23, 2445–2453

    Article  CAS  Google Scholar 

  123. Barnes, J.P. and Putnam, A.R. (1986) Allelopathic activity of rye (Secale cereale L.). In The science of allelopathy (Putnam, A.R. and Tang, C.-S. eds). Wiley-Interscience, New York, pp. 271–286

    Google Scholar 

  124. Belz, R.G. and Hurle, K. (2005) Differential exudation of two benzoxazinoids: some of the determining factors for seedling allelopathy of Triticeae species. J. Agric. Food Chem. 53, 250–261

    Article  PubMed  CAS  Google Scholar 

  125. Huang, Z. et al (2003) Correlation between phytotoxicity on annual grasses (Lolium rigidum) and production dynamics of allelochemicals within root exudates of an allelopathic wheat. J. Chem. Ecol. 29, 2263–2279

    Article  PubMed  CAS  Google Scholar 

  126. Macías, F.A. et al (2006) Structure-activity relationship (SAR) studies of benzoxazinones, their degradation products and analogues. Phytotoxicity on target species (STS). J. Agric. Food Chem. 53, 538–548

    Article  CAS  Google Scholar 

  127. Sánchez-Moreiras, A.M. et al (2004) Mode of action of the hydoxamic acid BOA and other related compounds. In Allelopathy: Chemistry and mode of action of allelochemicals (Macías, F.A. et al eds). CRC Press, Boca Raton, FL, pp. 239–252

    Google Scholar 

  128. Niemeyer, H.M. et al (1987) Inhibition of energy metabolism by benzoxazolin-2-one. Comp. Biochem. Physiol. 87B, 35–39

    CAS  Google Scholar 

  129. Freibe, A. et al (1997) Effects of 2,4-dihydroxy-1,4-benzoxazin-3-ones on the activity of plasma membrane H+-ATPase. Phytoc­hemistry 44, 979–983

    Article  Google Scholar 

  130. Reigosa, M.J. et al (2001) Comparison of physiological effects of allelochemicals and commercial herbicides. Allelopathy J. 8, 211–220

    Google Scholar 

  131. Rojas, M.C. et al (1997) Stimulatory effect of DIMBOA on NADH oxidation catalyzed by horseradish peroxidase. Phytochemistry 46, 11–15

    Article  Google Scholar 

  132. Kato-Noguchi, H. and Macías, F.A. (2005) Effect of 6-methoxy-2-benzoxazolinone on the germination and α-amylase activity in lettuce seeds. J. Plant Physiol. 162, 1304–1307

    Article  PubMed  CAS  Google Scholar 

  133. Baerson, S.R. et al (2005) Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one (BOA). J. Biol. Chem. 280, 21867–21881

    Article  PubMed  CAS  Google Scholar 

  134. Wieland, I. et al (1999) Detoxification of benzoxazolin-2(3H)-one in higher plants. In Recent advances in allelopathy Vol. 1 (Macías, F.A. et al eds). Servicio e Publicaciones-Univ. Cádiz, Spain, pp. 47–56

    Google Scholar 

  135. Rimando, A.M. and Duke, S.O. (2003) Rice allelopathy. In Rice production: Origin, history, and technology (Smith, C.S. and Dilday, R.H. eds). Wiley, New York, pp. 221–244

    Google Scholar 

  136. Olofsdotter, M. et al (2002) Why phenolic acids are unlikely primary allelochemicals in rice. J. Chem. Ecol. 28, 229–242

    Article  PubMed  CAS  Google Scholar 

  137. Blum, U. (1996) Allelopathic interactions involving phenolic acids. J. Nematol. 28, 259–267

    PubMed  CAS  Google Scholar 

  138. Einhellig, F.A. and Rasmussen, J.A. (1978) Synergistic inhibitory effects of vanillic and p-hydroxybenzoic acids on radish and grain sorghum. J. Chem. Ecol. 4, 425–436

    Article  CAS  Google Scholar 

  139. Rasmussen, J.A. and Einhellig, F.A. (1977) Synergistic inhibitory effects of p-coumaric and ferulic acids on germination and growth of grain sorghum. J. Chem. Ecol. 3, 197–205

    Article  CAS  Google Scholar 

  140. Rasmussen, J.A. and Einhellig, F.A. (1979) Inhibitory effects of combinations of three phenolic acids on grain sorghum germination. Plant Sci. Lett. 14, 69–74

    Article  CAS  Google Scholar 

  141. Blum, U. et al (1984) Effects of ferulic acid and some of its microbial metabolic products on radicle growth of cucumber. J. Chem. Ecol. 10, 1169–1191

    Article  CAS  Google Scholar 

  142. Blum, U. et al (1985) Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture. J. Chem. Ecol. 11, 619–641

    Article  CAS  Google Scholar 

  143. Blum, U. et al (1985) Effects of ferulic and p-coumaric acids in nutrient culture on cucumber leaf expansion as influenced by pH. J. Chem. Ecol. 11, 1567–1582

    Article  CAS  Google Scholar 

  144. Blum, U. et al (1989) Effects of mixtures of phenolic acids on leaf area expansion of cucumber seedlings grown in different pH Portsmouth A1 soil materials. J. Chem. Ecol. 15, 2413–2423

    Article  CAS  Google Scholar 

  145. Gerig, T.M. and Blum, U. (1991) Effects of mixtures of four phenolic acids on leaf area expansion of cucumber grown in Portsmouth B1 soil materials. J. Chem. Ecol. 17, 29–40

    Article  CAS  Google Scholar 

  146. Gerig, T.M. et al (1989) Statistical analysis of the joint inhibitory action of similar compounds. J. Chem. Ecol. 15, 2403–2412

    Article  CAS  Google Scholar 

  147. Jia, C. et al (2006) Joint action of benzoxazinone derivatives and phenolic acids. J. Agric. Food Chem. 54, 1049–1057

    Article  PubMed  CAS  Google Scholar 

  148. Lyu, S.W. et al (1990) Effects of mixtures of phenolic acids on phosphorus uptake by cucumber seedlings. J. Chem. Ecol. 16, 2559–2567

    Article  CAS  Google Scholar 

  149. Shann, J.R. and Blum, U. (1987) The uptake of ferulic and p-hydroxybenzoic acids by Cucumis sativus. Phytochemistry 26, 2959–2964

    Article  CAS  Google Scholar 

  150. Blum, U. et al (2000) Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J. Chem. Ecol. 26, 2059–2078

    Article  CAS  Google Scholar 

  151. Tharayil, N. et al (2006) Preferential sorption of phenolic phytotoxins to soil: implications for altering the availability of allelochemicals. J. Agric. Food Chem. 54, 3033–3040

    Article  PubMed  CAS  Google Scholar 

  152. Lehman, M.E. and Blum, U. (1999) Influence of pretreatment stresses on inhibitory effects of ferulic acid, an allelopathic phenolic acid. J. Chem. Ecol. 25, 1517–1529

    Article  CAS  Google Scholar 

  153. Booker, F.L. et al (1993) Short-term effects of ferulic acid on ion uptake and water relations in cucumber seedlings. J. Exp. Bot. 43, 649–55

    Article  Google Scholar 

  154. Lehman, M.E. and Blum, U. (1999) Evaluation of ferulic acid uptake as a measurement of allelochemical dose: effective concentration. J. Chem. Ecol. 25, 2585–2600

    Article  CAS  Google Scholar 

  155. Blum, U. and Gerig, T.M. (2005) Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: Nutrient culture studies. J. Chem. Ecol. 31, 1907–1932

    Article  PubMed  CAS  Google Scholar 

  156. Fujii, Y. (1999) Allelopathy of velvetbean: Determination and identification of l-DOPA as a candidate of allelopathic substances. In Biologically Active Natural Products: Agrochemicals (Cutler, H.G. and Cutler, S.J. eds). CRC Press, Boca Raton, FL, pp. 33–47

    Google Scholar 

  157. Nishihara, E. et al (2005) l-3-(3,4-Dihydroxyphenyl)alanine (l-DOPA), an allelochemical exuded from velvetbean (Mucuna pruriens) roots. Plant Growth Regul. 45, 113–120

    Article  CAS  Google Scholar 

  158. Nishihara, E. et al (2004) Germination growth response of different plant species to the allelochemical l-3,4-dihydroxyphenylalanine (l-DOPA). Plant Growth Regul. 42, 181–189

    Article  CAS  Google Scholar 

  159. Hachinohe, M. et al (2004) absorption, translocation and metabolism of l-DOPA in barnyardgrass and lettuce: Their involvement in species-selective phytotoxic action. Plant Growth Regul. 43, 237–243

    Article  CAS  Google Scholar 

  160. Hachinohe, M. and Matsumoto, H. (2005) Involvement of reactive oxygen species generated from melanin synthesis pathway in phytotoxicity of l-DOPA. J. Chem. Ecol. 31, 237–246

    Article  PubMed  CAS  Google Scholar 

  161. Hachinohe, M. and Matsumoto, H. (2007) Mechanism of selective phytotoxicity of l-3,4-dihydroxyphenylalanine (l-DOPA) in barnyardgrass and lettuce. J. Chem. Ecol. 33, 1919–1926

    Article  PubMed  CAS  Google Scholar 

  162. Soares, A.R. et al (2007) l-DOPA increases lignification associated with Glycine max root growth-inhibition. J. Chem. Ecol. 33, 265–275

    Article  PubMed  CAS  Google Scholar 

  163. Hiradate, S. et al (2005) Changes in chemical structure and biological activity of l-DOPA as influence by andosol and its components. Soil Sci. Plant Nut. (Japan) 51, 477–484

    Article  CAS  Google Scholar 

  164. Bertin, C. et al (2003) Laboratory assessment of the allelopathic effects of fine leaf fescues. J. Chem. Ecol. 29, 1919–1937

    Article  PubMed  CAS  Google Scholar 

  165. Bertin, C. et al (2007) Grass roots chemistry: meta-tyrosine, an herbicidal nonprotein amino acid. Proc. Natl. Acad. Sci. USA 104, 16964–16969

    Article  PubMed  CAS  Google Scholar 

  166. Schneider, D. et al (2002) Cycads: their evolution, toxins, herbivores and insect pollinators. Naturwissenschaften 89, 281–294

    Article  PubMed  CAS  Google Scholar 

  167. Lambein, F. et al (2001) Non-protein amino acids and food safety. Special Publication – Royal Soc. Chem. 269, 580–583

    CAS  Google Scholar 

  168. Xuan, T.D. et al (2006) Mimosine in Leucaena as a potent bio-herbicide. Agron. Sustain. Devel. 26, 89–97

    Article  CAS  Google Scholar 

  169. Schenk, S.U. and Werner, D. (1991) β-(3-Isoxazolin-5-on-2-yl)-alanine from Pisum: allelopathic properties and antimycotic bioassay. Phytochemistry 30, 467–470

    Article  CAS  Google Scholar 

  170. Fonné-Pfister, R. et al (1996) The mode of action and the structure of a herbicide in complex with its target: binding of activated hydantocidin to the feedback regulation site of adenylosuccinate synthetase. Proc. Natl. Acad. Sci. USA 93, 9431–9436

    Article  PubMed  Google Scholar 

  171. Dayan, F.E. et al (2002) Bioactivation of the fungal phytotoxin 2,5-anhydro-d-glucitol by glycolytic enzymes is an essential component of its mechanism of action. Z. Naturforsch. 57c, 645–653

    Google Scholar 

  172. Ishimitsu, S. et al (1980) Formation of m-tyrosine and o-tyrosine from l-phenylalanine by rat brain homogenate. Chem. Pharm. Bull. (Tokyo) 28, 1653–1655

    Article  PubMed  CAS  Google Scholar 

  173. Duke, S.O. (2003) Weeding with transgenes. Trends Biotechnol. 21, 182–195

    Article  CAS  Google Scholar 

  174. Duke, S.O. et al (1999) Tissue localization and potential uses of phytochemicals with biological activity. In Recent advances in allelopathy Vol. 1 (Macías, F.A. et al eds). Servicio e Publicaciones-Univ. Cádiz, Spain, pp. 211–218

    Google Scholar 

  175. Singh, H.P. et al (1999) Autotoxicity: concept, organisms, and ecological significance. Crit. Rev. Plant Sci. 18, 757–772

    Article  CAS  Google Scholar 

  176. Duke, S.O. and Paul, R.N. (1993) Development and fine structure of the glandular trichomes of Artemisia annua L. Int. J. Plant Sci. 154, 107–118

    Article  Google Scholar 

  177. Duke, M.V. et al (1994) Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua. Int. J. Plant Sci. 155, 365–373

    Article  Google Scholar 

  178. Tellez, M.R. et al (1999) Differential accumulation of isoprenoids in glanded and glandless Artemisia annua L. Phytochemistry 52, 1035–1040

    Article  CAS  Google Scholar 

  179. Oliva, A. et al (2002) Aryltertralin lignans inhibit plant growth by affecting formation of mitotic microtubular organizing centers. Pestic. Biochem. Physiol. 72, 45–54

    Article  CAS  Google Scholar 

  180. Zavala, J.A. et al (2004) Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuata. Proc. Natl. Acad. Sci. USA 101, 1607–1612

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen O. Duke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dayan, F.E., Duke, S.O. (2009). Biological Activity of Allelochemicals. In: Osbourn, A., Lanzotti, V. (eds) Plant-derived Natural Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85498-4_17

Download citation

Publish with us

Policies and ethics