Skip to main content
Log in

Phytotoxicity of sorgoleone found in grain Sorghum root exudates

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Root exudates ofSorghum bicolor consist primarily of a dihydroquinone that is quickly oxidized to ap-benzoquinone named sorgoleone. The aim of this investigation was to determine the potential activity of sorgoleone as an inhibitor of weed growth. Bioassays showed 125μM sorgoleone reduced radicle elongation ofEragrostis tef. In liquid culture, 50-μM sorgoleone treatments stunted the growth ofLemna minor. Over a 10-day treatment period, 10μM sorgoleone in the nutrient medium reduced the growth of all weed seedlings tested:Abutilon theophrasti, Datura stramonium, Amaranthus retroflexus, Setaria viridis, Digitaria sanguinalis, andEchinochloa crusgalli. These data show sorgoleone has biological activity at extremely low concentrations, suggesting a strong contribution toSorghum allelopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Wahab, A.S., andRice, E.L. 1967. Plant inhibition by Johnson grass and its possible significance in old-field succession.Bull. Torrey Bot. Club. 94:486–497.

    Google Scholar 

  • Alsaadawi, I.S., Al-Uqaili, J.K., Alrubeaa, A.J., andAl-Hadithy, S.M. 1986. Allelopathic suppression of weed and nitrification by selected cultivars ofSorghum bicolor (L.) Moench.J. Chem. Ecol. 12:209–219.

    Google Scholar 

  • Boe, A., Sommerfeldt, J., Wynia, R., andThiex, N. 1986. A preliminary evaluation of the forage potential of teff.Proc. S. Dak. Acad. Sci. 65:75–82.

    Google Scholar 

  • Breazeale, J.F. 1924. The injurious after-effects of sorghum.J. Am. Soc. Agron. 16:689–700.

    Google Scholar 

  • Chang, M., Netzly, D.H., Butler, L.G., andLynn, D.G. 1986. Chemical regulation of distance: Characterization of the first natural host germination stimulant forStriga asiatica.J. Am. Chem. Soc. 108:7858–7860.

    Google Scholar 

  • Cleland, C.F., andBriggs, W.R. 1967. Flowering response of the long-day plantLemna gibba G3.Plant Physiol. 42:1553–1561.

    Google Scholar 

  • Einhellig, F.A. 1986. Mechanisms and modes of action of allelochemicals, pp. 171–188,in A.R. Putnam and C.S. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.

    Google Scholar 

  • Einhellig, F.A. 1989. Interactive effects of allelochemicals and environmental stress, pp. 101–118,in C.H. Chou and G.R. Waller (eds.). Phytochemical Ecology: Allelochemicals, Mycotoxins and Insect Pheromones and Allomones. Institute of Botany, Academia Sinica Mongraph Series No. 9. Taipei, Taiwan.

  • Einhellig, F.A., andRasmussen, J.A. 1979. Effects of three phenolic acids on chlorophyll content and growth of soybean and grain sorghum seedlings.J. Chem. Ecol. 5:815–824.

    Google Scholar 

  • Einhellig, F.A., andRasmussen, J.A. 1989. Prior cropping with grain sorghum inhibits weeds.J. Chem. Ecol. 15:951–960.

    Google Scholar 

  • Einhellig, F.A., Rice, E.L., Risser, P.G., andWender, S.H. 1970. Effects of scopoletin on growth, CO2 exchange rates, and concentration of scopoletin, scopolin, and chlorogenic acids in tobacco, sunflower, and pigweed.Bull. Torrey Bot. Club 97:22–33.

    Google Scholar 

  • Einhellig, F.A., Leather, G.R., andHobbs, L.L. 1985. Use ofLemna minor L. as a bioassay in allelopathy.J. Chem. Ecol. 11:65–72.

    Google Scholar 

  • Fate, G., Chang, M., andLynn, D.G. 1990. Control of germination inStriga asiatica: Chemistry of spatial definition.Plant Physiol. 93:201–207.

    Google Scholar 

  • Forney, D.R., Foy, C.L., andWolf, D.D. 1985. Weed suppression in no-till alfalfa (Medicago sativa) by prior cropping of summer-annual forage grasses.Weed Sci. 33:490–497.

    Google Scholar 

  • Guenzi, W.D., andMcCalla, T.M. 1966. Phenolic acids in oats, wheat, sorghum and corn residues and their phytotoxicity.Agron. J. 58:303–304.

    Google Scholar 

  • Guenzi, W.D., McCalla, T.M., andNordstadt, F.A. 1967. Presence and persistence of phytotoxic substances in wheat, oat, corn, and sorghum residues.Agron. J. 59:163–165.

    Google Scholar 

  • Haar, M.J. 1990. Allelopathic effects of several sesquiterpene lactones. MA thesis. University of South Dakota, Vermillion, South Dakota. 73 pp.

    Google Scholar 

  • Hoagland, D.R., andArnon, D.I. 1950. The water culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 347.

  • Hussain, P., andGadoon, M.A. 1981. Allelopathic effects ofSorghum vulgare Pers.Oecologia 51:284–288.

    Google Scholar 

  • Lehle, F.R., andPutnam, A.R. 1983. Allelopathic potential of sorghum (Sorghum bicolor): Isolation of seed germination inhibitors.J. Chem. Ecol. 9:1223–1234.

    Google Scholar 

  • Martin, J.H., Couch, J.F., andBriese, R.R. 1938. Hydrocyanic acid content of different parts of the sorghum plant.J. Am. Soc. Agron. 30:725–734.

    Google Scholar 

  • Netzly, D.H., andButler, L.G. 1986. Roots ofSorghum exude hydrophobic droplets containing biologically active components.Crop Sci. 26:775–778.

    Google Scholar 

  • Netzly, D.H., Riopel, J.L., Ejeta, G., andButler, L.G. 1988. Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudate of Sorghum (Sorghum bicolor).Weed Sci. 36:441–446.

    Google Scholar 

  • Nicollier, G.F., Pope, D.F., andThompson, A.C. 1983. Biological activity of dhurrin and other compounds from Johnson grass (Sorghum halepense).J. Agric. Food Chem. 31:744–748.

    Google Scholar 

  • Panasiuk, O., Bills, D.D., andLeather, G.R. 1986. Allelopathic influence ofSorghum bicolor on weeds during germination and early development of seedlings.J. Chem. Ecol. 12:1533–1543.

    Google Scholar 

  • Purvis, C.E. 1990. Allelopathy: A new direction in weed control.Plant Prot. Q. 5:55–59.

    Google Scholar 

  • Putnam, A.R., andDefrank, J. 1983. Use of phytotoxic plant residues for selective weed control.Crop Prot. 2:173–181.

    Google Scholar 

  • Putnam, A.R., DeFrank, J., andBarnes, J.P. 1983. Exploitation of allelopathy for weed control in annual and perennial cropping systems.J. Chem. Ecol. 8:1001–1010.

    Google Scholar 

  • Ramirez-Toro, G.I., Leather, G.R., andEinhellig, F.A. 1988. Effects of three phenolic compounds onLemna gibba G3.J. Chem. Ecol. 14:845–853.

    Google Scholar 

  • Rice, E.L. 1984. Allelopathy. Academic Press, Orlando, Florida, 422 pp.

    Google Scholar 

  • Rietveld, W.J. 1983. Allelopathic effects of juglone on germination and growth of several herbaceous and woody species.J. Chem. Ecol. 9:295–308.

    Google Scholar 

  • Scholes, K.A. 1987. Effects of six classes of allelochemicals on growth, photosynthesis, and chlorophyll content inLemna minor L. MA thesis. University of South Dakota, Vermillion, South Dakota. 81 pp.

    Google Scholar 

  • Weston, L.A., Harmon, R., andMueller, S. 1989. Allelopathic potential of sorghum-sudangrass hybrid (sudex).J. Chem. Ecol. 15:1855–1865.

    Google Scholar 

  • Wintermans, J.F.G.M., andDeMots, A. 1965. Spectrophotometry characteristics of chlorophylls a and b and their pheophytins in ethanol.Biochim. Biophys. Acta 109:448–453.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einhellig, F.A., Souza, I.F. Phytotoxicity of sorgoleone found in grain Sorghum root exudates. J Chem Ecol 18, 1–11 (1992). https://doi.org/10.1007/BF00997160

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00997160

Key words

Navigation