Skip to main content

Genomics of Sorghum, a Semi-Arid Cereal and Emerging Model for Tropical Grass Genomics

  • Chapter
Genomics of Tropical Crop Plants

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 1))

Abstract

Sorghum, an important failsafe crop in the global agroecosystem, is also emerging as a model for tropical grasses based on its small and well-characterized genome, low level of gene duplication, and close relationship to the larger and more complex genomes of maize and sugarcane. A whole-genome shotgun sequence of the sorghum genome is complete and being annotated. The sorghum sequence, together with the attributes of sorghum as a prospective functional genomics and association genetics system, has many implications for better understanding the structure, function, and evolution of cereal genomes. In addition, the sequence will raise to a new level the opportunities to engage genomics in the improvement of human livelihood in arid and semi-arid tropical regions in which sorghum is a staple. Already established as a seed-based ethanol crop, progress in understanding the genetic control of perenniality in sorghum makes it also promising as a cellulosic biofuels crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrama HA, Wilde G, Reese J, Campbell L, Tuinstra M (2002) Genetic mapping of QTLs associated with greenbug resistance and tolerance inSorghum bicolor. Theor Appl Genet 104: 1373–1378

    Article  PubMed  CAS  Google Scholar 

  • Arumuganathan K, Earle E (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Reptr 9: 208–218

    Article  CAS  Google Scholar 

  • Battraw M, Hall TC (1991) Stable transformation of Sorghum-bicolor protoplasts with chimeric neomycin phosphotransferase-Ii and beta-glucuronidase genes. Theor Appl Genet 82: 161–168

    Article  CAS  Google Scholar 

  • Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, et al. (2005) Sorghum genome sequencing by methylation filtration. Plos Biol 3: 103–115

    Article  Google Scholar 

  • Bethel CM, Sciara EB, Estill JC, Bowers JE, Hanna W, et al. (2006) A framework linkage map of bermudagrass (Cynodon dactylon x transvaalensis) based on single-dose restriction fragments. Theor Appl Genet 112: 727–737

    Article  PubMed  CAS  Google Scholar 

  • Bhattramakki D, Dong JM, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43: 988–1002

    Article  PubMed  CAS  Google Scholar 

  • Bowers J, Abbey C, Anderson S, Chang C, Draye X, et al. (2003) A high-density genetic recombination map of sequence-tagged sites for sorghuz, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165: 367–386

    PubMed  CAS  Google Scholar 

  • Bowers JE, Arias MA, Asher R, Avise JA, Ball RT, et al. (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA 102: 13206–13211

    Article  PubMed  CAS  Google Scholar 

  • Buchanan CD, Lim SY, Salzman RA, Kagiampakis L, Morishige DT, et al. (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58: 699–720

    Article  PubMed  CAS  Google Scholar 

  • Carrari F, Benech-Arnold R, Osuna-Fernandez R, Hopp E, Sanchez R, et al. (2003) Genetic mapping of the Sorghum bicolor vp1 gene and its relationship with preharvest sprouting resistance. Genome 46: 253–258

    Article  PubMed  CAS  Google Scholar 

  • Carvalho CH, Zehr UB, Gunaratna N, Anderson J, Kononowicz HH, et al. (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet Mol Biol 27: 259–269

    CAS  Google Scholar 

  • Casa AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, et al. (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci USA 90: 11212–11216

    Article  Google Scholar 

  • Casa AM, Kononowicz AK, Haan TG, Zhang L, Tomes, DT, et al. (1997) Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev Biol-Plant 33: 92–100

    Google Scholar 

  • Casa AM, Mitchell SE, Hamblin MT, Sun H, Bowers JE, et al. (2005) Diversity and selection in sorghum: simultaneous analyses using simple sequence repeats. Theor Appl Genet 111: 23–30

    Article  PubMed  CAS  Google Scholar 

  • Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed rflp map of Sorghum-bicolor X S-Propinquum, suitable for high-density mapping, suggests ancestral duplication of sorghum chromosomes or chromosomal segments. Theor App Genet 87: 925–933

    CAS  Google Scholar 

  • Chopra S, Brendel V, Zhang JB, Axtell JD, Peterson T (1999) Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor. Proc Natl Acad Sci USA 96: 15330–15335

    Article  PubMed  CAS  Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262: 579–588

    Article  PubMed  CAS  Google Scholar 

  • Devi PB, Sticklen MB (2003) In vitro culture and genetic transformation of sorghum by microprojectile bombardment. Plant Biosystems 137: 249–254

    Google Scholar 

  • Dewet JMJ, Gupta SC, Harlan JR, Grassl CO (1976) Cytogenetics of introgression from Saccharum into Sorghum. Crop Sci 16: 568–572

    Article  Google Scholar 

  • Dufour P, Deu M, Grivet L, D’Hont A, Paulet F, et al. (1997) Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94: 409–418

    Article  CAS  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, et al. (2006) Ethanol can contribute to energy and environmental goals. Science 311: 506–508

    Article  PubMed  CAS  Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Brown P, et al. (2006) Genetic map alignment and QTL correspondence between inter- and intra-specific sorghum populations. Theor Appl Genet 112: 1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Gao ZS, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005a) Efficient genetic transformation of Sorghum using a visual screening marker. Genome 48: 321–333

    CAS  Google Scholar 

  • Gao ZS, Xie XJ, Ling Y, Muthukrishnan S, Liang GH (2005b) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotech J 3: 591–599

    Article  CAS  Google Scholar 

  • Gaut BS, Clark LG, Wendel JF, Muse SV (1997) Comparisons of the molecular evolutionary process at rbcL and ndhF in the grass family .(Poaceae) Mol Biol Evol 14: 769–777

    Google Scholar 

  • Gingle AR, Huang YC, Yang H, Bowers JE, Kresovich S, Paterson AH (2007) CGGC: An integrated web resource for sorghum. Crop Sci in press

    Google Scholar 

  • Gomez MI, Islam-Faridi MN, Zwick MS, Czeschin DG, Hart GE, et al. (1998) Tetraploid nature of sorghum bicolor (L.) Moench. J Heredity 89: 188–190

    Article  Google Scholar 

  • Hagio T, Blowers AD, Earle ED (1991) Stable transformation of Sorghum cell-cultures after bombardment with DNA-coated microprojectiles. Plant Cell Rep 10: 260–264

    Article  CAS  Google Scholar 

  • Hamblin MT, Mitchell SE, White GM, Gallego W, Kukatla R, et al. (2004) Comparative population genetics of the panicoid grasses: Sequence polymorphism, linkage disequilibrium and selection in a diverse sample of Sorghum bicolor. Genetics 167: 471–483

    Article  PubMed  CAS  Google Scholar 

  • Hamblin MT, Fernandez MGS, Casa AM, Mitchell SE, Paterson AH, et al. (2005) Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 171: 1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Hamblin MT, Casa AM, Sun H, Murray SC, Paterson AH, et al. (2006) Challenges of detecting directional selection after a domestication bottleneck. Genetics 173: 953–964

    Article  PubMed  CAS  Google Scholar 

  • Haussmann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT, et al. (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106: 133–142

    PubMed  CAS  Google Scholar 

  • Haussmann BIG, Hess DE, Omanya GO, Folkertsma RT, Reddy BVS, et al. (2004) Genomic regions influencing resistance to the parasitic weed Striga hermonthica in two recombinant inbred populations of sorghum. Theor Appl Genet 109: 1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds: distribution and biology. University Press of Hawaii, Honolulu, HI.

    Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25: 784–791

    Article  PubMed  CAS  Google Scholar 

  • Hu FY, Tao DY, Sacks E, Fu BY, Xu P, et al. (2003) Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci USA 100: 4050–4054

    Article  PubMed  CAS  Google Scholar 

  • Islam-Faridi MN, Childs KL, Klein PE, Hodnett G, Menz MA, et al. (2002) A molecular cytogenetic map of sorghum chromosome 1: Fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161: 345–353

    PubMed  CAS  Google Scholar 

  • Jessup RW, Burson BL, Burow G, Wang YW, Chang C, et al. (2003) Segmental allotetraploidy and allelic interactions in buffelgrass (Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.) as revealed by genome mapping. Genome 46: 304–313

    Article  PubMed  CAS  Google Scholar 

  • Katsar CS, Paterson AH, Teetes GL, Peterson GC (2002) Molecular analysis of Sorghum resistance to the greenbug (Homoptera : Aphididae). J Econ Entomol 95: 448–457

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Childs KL, Islam-Faridi MN, Menz MA, Klein RR, et al. (2002) Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome 45: 402–412

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Islam-Faridi MN, Klein PE, Stelly DM, Price HJ, et al. (2005a) Comprehensive molecular cytogenetic analysis of sorghum genome architecture: Distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics 171: 1963–1976

    Article  CAS  Google Scholar 

  • Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE, et al. (2005b) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169: 1169–1173

    Article  CAS  Google Scholar 

  • Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE, et al. (2005c) Molecular cytogenetic maps of sorghum linkage groups 2 and 8. Genetics 169: 955–965

    Article  CAS  Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong JM, et al. (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: Progress toward a sorghum genome map. Genome Res 10: 789–807

    Article  PubMed  CAS  Google Scholar 

  • Klein RR, Klein PE, Chhabra AK, Dong J, Pammi S, et al. (2001) Molecular mapping of the rf1 gene for pollen fertility restoration in sorghum (Sorghum bicolor L.) Theor Appl Genet 102: 1206–1212

    Article  CAS  Google Scholar 

  • Klein RR, Klein PE, Mullet JE, Minx P, Rooney WL, et al. (2005) Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor Appl Genet 111: 994–1012

    Article  PubMed  CAS  Google Scholar 

  • Kresovich S, Barbazuk B, Bedell JA, Borrell A, Buell CR, et al. (2005) Toward sequencing the sorghum genome. A US National Science Foundation-Sponsored Workshop Report. Plant Physiol 138: 1898–1902

    Article  CAS  Google Scholar 

  • Lijavetzky D, Martinez MC, Carrari F, Hopp HE (2000) QTL analysis and mapping of pre-harvest sprouting resistance in sorghum. Euphytica 112: 125–135

    Article  Google Scholar 

  • Lin Y, Schertz K, Paterson A (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141: 391–411.

    PubMed  CAS  Google Scholar 

  • Magalhaes JV, Garvin DF, Wang YH, Sorrells ME, Klein PE, et al. (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167: 1905–1914

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CL, Hermann SM, Casu RE, Knight D, Drenth J, et al. (2004) Homologues of the maize rust resistance gene Rp1-D are genetically associated with a major rust resistance QTL in sorghum. Theor Appl Genet 109: 875–883

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CL, Casu RE, Drenth J, Knight D, Whan VA, et al. (2005) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48: 391–400

    Article  PubMed  CAS  Google Scholar 

  • Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, et al. (2002) A high-density genetic map ofSorghum bicolor (L.) Moench based on 2926 AFLP (R), RFLP and SSR markers. Plant Mol Biol 48: 483–499

    Article  PubMed  CAS  Google Scholar 

  • Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA, et al. (1998) Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theor Appl Genet 96: 832–839

    Article  CAS  Google Scholar 

  • Ming R, Liu SC, Lin YR, da Silva J, Wilson W, et al. (1998) Detailed alignment of Saccharum and Sorghum chromosomes: Comparative organization of closely related diploid and polyploid genomes. Genetics 150: 1663–1682

    PubMed  CAS  Google Scholar 

  • Missaoui AM, Paterson AH, Bouton JH (2005) Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markers. Theor Appl Genet 110: 1372–1383

    Article  PubMed  CAS  Google Scholar 

  • Multani DS, Meeley RB, Paterson AH, Gray J, Briggs SP, et al. (1998) Plant-pathogen microevolution: Molecular basis for the origin of a fungal disease in maize. Proc Natl Acad Sci USA 95: 1686–1691

    Article  PubMed  CAS  Google Scholar 

  • Mutengwa CS, Tongoona PB, Sithole-Niang I (2005) Genetic studies and a search for molecular markers that are linked to Striga asiatica resistance in sorghum. African J Biotechnol 4: 1355–1361

    CAS  Google Scholar 

  • Nagaraj N, Reese JC, Tuinstra M, Smith CM, St. Amand P, et al. (2005) Molecular mapping of sorghum genes expressing tolerance to damage by greenbug (Homoptera: Aphididae). J Econ Entomol 98: 595–602

    Google Scholar 

  • Park SJ, Huang YH, Ayoubi P (2006) Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta 223: 932–947

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Lin YR, Li ZK, Schertz KF, Doebley JF, et al. (1995a) Convergent domestication of cereal crops by independent mutations at corresponding genetic-loci. Science 269: 1714–1718

    Article  CAS  Google Scholar 

  • Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995b) The weediness of wild plants - molecular analysis of genes influencing dispersal and persistence of Johnsongrass, Sorghum halepense (L) Pers. Proc Natl Acad Sci USA 92: 6127–6131

    Article  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101: 9903–9908

    Article  PubMed  CAS  Google Scholar 

  • Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, et al. (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12: 795–807

    Article  PubMed  CAS  Google Scholar 

  • Pratt LH, Liang C, Shah M, Sun F, Wang HM, et al. (2005) Sorghum expressed sequence tags identify signature genes for drought, pathogenesis, and skotomorphogenesis from a milestone set of 16,801 unique transcripts. Plant Physiol 139: 869–884

    Article  PubMed  Google Scholar 

  • Quinby JR (1974) Sorghum Improvement and the Genetics of Growth. Texas A&M University Press, College Station

    Google Scholar 

  • Salzman RA, Brad, JA, Finlayson SA, Buchanan CD, Summer EJ, et al. (2005) Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol 138: 352–368

    Article  PubMed  CAS  Google Scholar 

  • Sang YJ, Liang GH (2000) Comparative physical mapping of the 18S-5.8S-26S rDNA in three sorghum species. Genome 43: 918–922

    Article  PubMed  CAS  Google Scholar 

  • Scheinost P (2001) Perennial wheat: a sustainable cropping system for the Pacific Northwest. Amer J Altern Agric 16, 147–151

    Article  Google Scholar 

  • Schertz KF, Stephens JC (1966) Compilation of gene symbols, recommended revisions, and summary of linkages for inherited characters of Sorghum vulgare Pers. Rep. No. 3. Texas A&M University, College Station

    Google Scholar 

  • Schloss SJ, Mitchell SE, White GM, Kukatla R, Bowers JE, et al. (2002) Characterization of RFLP probe sequences for gene discovery and SSR development in Sorghum bicolor (L.) Moench. Theor Appl Genet 105, 912–920

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Chaudhary K, Singal HR, Magill CW, Boora KS (2006) Identification and characterization of RAPD and SCAR markers linked to anthracnose resistance gene in sorghumSorghum bicolor (L.) Moench. Euphytica 149: 179–187

    Article  CAS  Google Scholar 

  • Smith CW, Frederiksen RA (2000) Sorghum: origin, history, technology, and production. John Wiley and Sons, Hoboken

    Google Scholar 

  • Sobral BWS, Braga DPV, Lahood ES, Keim P (1994) Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae Griseb subtribe of the Andropogoneae Dumort tribe. Theor Appl Genet 87: 843–853

    Article  CAS  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Soughum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101: 733–741

    Article  CAS  Google Scholar 

  • Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, et al. (2004a) Close split of sorghum and maize genome progenitors. Genome Res 14: 1916–1923

    Article  CAS  Google Scholar 

  • Swigonova Z, Lai J, Ma JX, Ramakrishna W, Llaca M, et al. (2004b) On the tetraploid origin of the maize genome. Comp Func Genomics 5: 281–284.

    Article  CAS  Google Scholar 

  • Swigonova Z, Lai JS, Ma JX, Ramakrishna W, Llaca V, et al. (2004c) Close split of sorghum and maize genome progenitors. Genome Res 14: 1916–1923

    Google Scholar 

  • Tadesse Y, Sagi L, Swennen R, Jacobs M (2003) Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tissue Organ Culture 75: 1–18

    Article  CAS  Google Scholar 

  • Tao YZ, Jordan DR, Henzell RG, McIntyre CL (1998) Identification of genomic regions for rust resistance in sorghum. Euphytica 103: 287–292

    Article  CAS  Google Scholar 

  • Tao YZ, Hardy A, Drenth J, Henzell RG, Franzmann BA, et al. (2003) Identifications of two different mechanisms for sorghum midge resistance through QTL mapping. Theor Appl Genet 107: 116–122

    PubMed  CAS  Google Scholar 

  • Totad AS, Fakrudin B, Kuruvinashetti MS (2005) Isolation and characterization of resistance gene analogs (RGAs) from sorghum (Sorghum bicolor L. Moench) Euphytica 143: 179–188

    Article  CAS  Google Scholar 

  • Ulanch PE, Childs KL, Morgan PW, Mullet JE (1996) Molecular markers linked to Ma(1) in sorghum. Plant Physiol 111:709

    Google Scholar 

  • Wagoner P (1990) Perennial grain development - past efforts and potential for the future. Crit Rev Plant Sci 9: 381–408

    Google Scholar 

  • Wang ML, Dean R, Erpelding J, Pederson G (2006) Molecular genetic evaluation of sorghum germplasm differing in response to fungal diseases: Rust (Puccinia purpurea) and anthracnose (Collectotrichum graminicola). Euphytica 148: 319–330

    Article  CAS  Google Scholar 

  • Webster OJ (1964) Genetic studies in Sorghum vulgare (Pers.). Crop Sci 4: 207–210.

    Article  Google Scholar 

  • Wen L, Tang HV, Chen W, Chang R, Pring DR, et al. (2002) Development and mapping of AFLP markers linked to the sorghum fertility restorer gene rf4. Theor Appl Genet 104: 577–585

    Article  PubMed  CAS  Google Scholar 

  • Whitkus R, Doebley J, Lee M (1992) Comparative genetic mapping of sorghum and maize. Genetics 132:1119

    Google Scholar 

  • Woo S-S, Jiang J, Gill B, Paterson A, Wing R (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22: 4922–4931

    Article  PubMed  CAS  Google Scholar 

  • Xin Z, Wang M, Barkley N, Franks C, Burow G, et al. (2007) Development of a Tilling population for sorghum functional genomics. In: International Plant and Animal Genome Conference, p W397, San Diego CA

    Google Scholar 

  • Xu GW, Magill CW, Schertz KF, Hart GE (1994) A rflp linkage map of Sorghum bicolor (L) Moench. Theor Appl Genet 89: 139–145

    Article  CAS  Google Scholar 

  • Xu WW, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, et al. (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43: 461–469

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZY, Cai TS, Tagliani L, Miller M, Wang N, et al. (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44: 789–798

    Article  PubMed  CAS  Google Scholar 

  • Zwick MS, Islam-Faridi MN, Czeschin DG, Wing RA, Hart GE, et al. (1998) Physical mapping of the liguleless linkage group in Sorghum bicolor using rice RFLP-selected sorghum BACs. Genetics 148: 1983–1992

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Paterson, A.H., Bowers, J.E., Feltus, F.A. (2008). Genomics of Sorghum, a Semi-Arid Cereal and Emerging Model for Tropical Grass Genomics. In: Moore, P.H., Ming, R. (eds) Genomics of Tropical Crop Plants. Plant Genetics and Genomics: Crops and Models, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71219-2_20

Download citation

Publish with us

Policies and ethics