Skip to main content

Bioaugmentation of Azo Dyes

  • Chapter
  • First Online:
Biodegradation of Azo Dyes

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 9))

Abstract

Biodegradation is a cost-effective method to remove the residues of azo dyes prior to their discharge in wastewater streams from dye product industries. The efficacy of this treatment method is highly dependent on establishing an effective degrader community and maintaining environmental conditions that support the growth and activity of the degrader organisms. Although activated sludge is commonly used as a source of degrader organisms to start the process, bioaugmentation of the wastewater with highly effective strains provides a much more reliable process in which the process manager can use bacterial strains that target particular dye chemicals and metabolites to achieve complete mineralization. The most effective inoculants are able to degrade dyes over a broad concentration range, tolerate a range of environmental conditions of temperature, pH, and salinity, and persist at high population densities in competition with other microorganisms in mixed microbial cultures. The use of growth supplements such as yeast extract can further enhance the biodegradation activity. The ability to achieve complete mineralization of azo dyes depends on the control of the process in which initial decolorization takes place under microaerophilic conditions with low oxygen, followed by elimination of the dye metabolites using an aeration step. In many cases, this may be best achieved by using a mixture of bacterial strains that sequentially carry out the two-step process. Practical development of bacteria for bioaugmentation requires careful screening that is based not only on their efficacy in pure culture, but also on their ability to compete with the indigenous microbial communities in wastewater streams and ability to be produced and delivered as a stable inoculum. In the future, it may be useful to consider bioaugmentation with bacteria that contain mobile genetic elements that carry catabolic pathways, thereby allowing the genes to be introduced into the indigenous microorganisms. The ability to monitor introduced bacteria or catabolic genes will continue to be important for process optimization both in the laboratory and during operation in full-scale treatment systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AR:

Acid red

BOD:

Biological oxygen demand

DBMR:

Direct brown MR

DO:

Disperse orange

DR:

Direct red

MGE:

Mobile genetic element

NAD(P)H:

Nicotinamide adenine dinucleotide (phosphate)

RAPD:

Randomly amplified polymorphic DNA

RB:

Reactive black

References

  1. Alinsafi A, Evenou F, Abdulkarim EM et al (2007) Treatment of textile industry wastewater by supported photocatalysis. Dyes Pigm 74:439–445

    Article  CAS  Google Scholar 

  2. Arslan-Alaton I (2007) Degradation of a commercial textile biocide with advanced oxidation processes and ozone. J Env Manage 82:145–154

    Article  CAS  Google Scholar 

  3. Behnajady MA, Modirshahla N, Shokri M (2004) Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2: influence of operational parameters. Chemosphere 55:129–134

    Article  CAS  Google Scholar 

  4. Brosillon S, Djelal H, Merienne N, Amrane A (2008) Innovative integrated process for the treatment of azo dyes: coupling of photocatalysis and biological treatment. Desalination 222:331–339

    Article  CAS  Google Scholar 

  5. El-Gohary FA, Badawy MI, El-Khateeb MA, El-Kalliny AS (2009) Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton’s reaction and anaerobic treatment. J Hazard Mat 162:1536–1541

    Article  CAS  Google Scholar 

  6. Golab V, Vinder A, Simonic M (2005) Efficiency of the coagulation/flocculation method for the treatment of dye bath effluent. Dyes Pigm 67:93–97

    Article  CAS  Google Scholar 

  7. Hao JJ, Song FQ, Huang F, Yang CL, Zhang ZJ, Zheng Y, Tian XJ (2007) Production of laccase by a newly deuteromycete fungus Pestalotiopsis sp. and its decolorization of azo dye. J Industr Microbiol Biotechnol 34:233–240

    Article  CAS  Google Scholar 

  8. Lu X, Yang B, Chen J, Sun R (2009) Treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process. J Hazard Mat 161:241–245

    Article  CAS  Google Scholar 

  9. Moustafa ME (2005) Synthesis and structural and biological activity studies on some lanthanide chelates with O- and N-containing ligands. Spectr Lett 38:23–34

    Article  CAS  Google Scholar 

  10. Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigm 58:179–196

    Article  CAS  Google Scholar 

  11. Saxe JP, Lubenow BL, Chiu PC, Huang CP, Cha DK (2006) Enhanced biodegradation of azo dyes using an integrated elemental iron-activated sludge system effects of physical-chemical parameters. Wat Env Res 78:26–30

    Article  CAS  Google Scholar 

  12. Wang A, Qu J, Liu H, Ge J (2004) Degradation of azo dye Acid Red 14 in aqueous solution by electrokinetic and electooxidation process. Chemosphere 55:1189–1196

    Article  CAS  Google Scholar 

  13. Dubrow SF, Boardman GD, Michelsen DL (1996) Chemical pretreatment and aerobic-anaerobic degradation of textile dye wastewater. In: Reife A, Freeman HS (eds) Environmental chemistry of dyes and pigments. Wiley, New York

    Google Scholar 

  14. Khalid A, Arshad M, Crowley DE (2009) Biodegradation potential of pure and mixed bacterial cultures for removal of 4-nitroanaline from textile dye wastewater. Wat Res 43:1110–1116

    Article  CAS  Google Scholar 

  15. Bromley-Challenor KCA, Knapp JS, Zhang Z et al (2000) Decolorization of an azo dye by unacclimated activated sludge under anaerobic conditions. Wat Res 34:4410–4418

    Article  CAS  Google Scholar 

  16. Ekici P, Leupold G, Parlar H (2001) Degradability of selected azo dye metabolites in activated sludge systems. Chemosphere 44:721–728

    Article  CAS  Google Scholar 

  17. Paździor K, Klepacz-Smółka A, Ledakowicz S, Sójka-Ledakowicz J, Mrozińska Z, Żyłła R (2009) Integration of nanofiltration and biological degradation of textile wastewater containing azo dye. Chemosphere 75:250–255

    Article  CAS  Google Scholar 

  18. Worch E, Grischek T, Bomick H, Eppinger P (2002) Laboratory tests for simulating attenuation processes of aromatic amines in riverbank filtration. J Hydrol 266:259–268

    Article  CAS  Google Scholar 

  19. Cartwright RA (1983) Historical and modern epidemiological studies on populations exposed to N-substituted aryl compounds. Env Health Persp 49:13–19

    Article  CAS  Google Scholar 

  20. Chung KT, Cerniglia CE (1992) Mutagenicity of azo dyes: structure–activity relationships. Mut Res 277:201–220

    CAS  Google Scholar 

  21. Makinen PM, Theno TJ, Ferguson JF, Ongerth JE, Puhakka JA (1993) Chlorophenol toxicity removal and monitoring in aerobic treatment: recovery from process upsets. Env Sci Technol 27:1434–1439

    Article  CAS  Google Scholar 

  22. Miller JA, Miller EC (1983) Some historical aspects of N-aryl carcinogens and their metabolic activation. Env Health Persp 49:3–12

    Article  CAS  Google Scholar 

  23. Ozturk A, Abdullah MI (2001) Toxicological effect of indole and its azo dye derivatives on some microorganisms under aerobic conditions. Sci Total Env 358:137–142

    Google Scholar 

  24. Pinheiro HM, Touraud E, Thomas O (2004) Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigm 61:121–139

    Article  CAS  Google Scholar 

  25. Saupe A (1999) High rate biodegradation of 3- and 4-nitroaniline. Chemosphere 39:2325–2346

    Article  CAS  Google Scholar 

  26. Weisburger JH (2002) Comments on the history and importance of aromatic and heterocyclic amines in public health. Mut Res 506–507:9–20

    Google Scholar 

  27. Carliell CM, Barclay SJ, Naidoo N et al (1994) Anaerobic decolorisation of reactive dyes in conventional sewage treatment processes. Wat SA 20:341–344

    CAS  Google Scholar 

  28. Manu B, Chauhari S (2003) Decolorization of indigo and azo dyes in semicontinuous reactors with long hydraulic retention time. Process Biochem 38:1213–1221

    Article  CAS  Google Scholar 

  29. Boon N, Goris J, de Vos P, Verstraete W, Top EM (2000) Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosterone strain 12gfp. Appl Env Microbiol 66:2906–2913

    Article  CAS  Google Scholar 

  30. McClure NC, Fry JC, Weightman AJ (1991) Survival and catabolic activity of natural and genetically engineered bacteria in laboratory-scale activated sludge unit. Appl Env Microbiol 57:366–373

    CAS  Google Scholar 

  31. Rittman BE, Whiteman R (1994) Bioaugmentation: a coming of age. Biotechnol 1:12–16

    Google Scholar 

  32. van Limbergen HV, Top EM, Verstrate W (1998) Bioaugmentation in activated sludge: current features and future perspectives. Appl Microbiol Biotechnol 50:16–23

    Article  Google Scholar 

  33. Yu ZT, Mohn WW (2001) Bacterial diversity and community structure in an aerated lagoon revealed by ribosomal intergenic spacer analyses and 16S ribosomal DNA sequencing. Appl Environ Microbiol 67:1565–1574

    Article  CAS  Google Scholar 

  34. Limbergen HV, Top EM, Verstrate W (1998) Bioaugmentation in activated sludge: current features and future perspectives. Appl Microbiol Biotechnol 50:16–23

    Article  Google Scholar 

  35. Dabert P, Delgenes JP, Moletta R, Godon JJ (2002) Contribution of molecular microbiology to the study in water pollution removal of microbial community dynamics. Rev Env Sci Biotechnol 1:39–49

    Article  CAS  Google Scholar 

  36. Lucas MS, Amaral C, Sampaio A, Peres JA, Dias AA (2006) Biodegradation of the diazo dye Reactive Black 5 by a wild isolate of Candida oleophila. Enzyme Microbial Technol 39:51–55

    Article  CAS  Google Scholar 

  37. Chunli Z, Jiti Z, Jing W, Jing W, Baocheng Q (2008) Isolation and characterization of a nitrobenzene degrading yeast strain from activated sludge. J Hazard Mat 160:194–199

    Article  CAS  Google Scholar 

  38. Elisangela F, Andrea Z, Fabio DG et al (2009) Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int Biodeter Biodegr 63:280–288

    Article  CAS  Google Scholar 

  39. Franciscon E, Zille A, Garboggini FF et al (2009) Microaerophilic-aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process Biochem 44:446–452

    Article  CAS  Google Scholar 

  40. Khalid A, Arshad M, Crowley DE (2008) Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains. Appl Microbiol Biotechnol 78:361–369

    Article  CAS  Google Scholar 

  41. Khalid A, Arshad M, Crowley DE (2008) Decolorization of azo dyes by Shewanella sp. under saline conditions. Appl Microbiol Biotechnol 79:1053–1059

    Article  CAS  Google Scholar 

  42. Chen BY, Chen SY, Lin MY, Chang JS (2006) Exploring bioaugmentation strategies for azo-dye decolorization using a mixed consortium of Pseudomonas luteola and Escherichia coli. Process Biochem 41:1574–1581

    Article  CAS  Google Scholar 

  43. Qu Y, Zhou J, Wang J (2006) Bioaugmentation of bromoamine acid degradation with Sphingomonas xenophaga QYY and DNA fingerprint analysis of augmented systems. Biodegr 17:83–91

    Article  CAS  Google Scholar 

  44. Qu Y, Zhou J, Wang J, Xiang F, Xing L (2005) Microbial community dynamics in bioaugmented sequencing batch reactors for bromoamine acid removal. Microbiol Lett 246:143–149

    Article  CAS  Google Scholar 

  45. Apohan E, Yesılada O (2005) Role of white rot fungus Funalia trogii in detoxification of textile dyes. J Basic Microbiol 45:99–105

    Article  CAS  Google Scholar 

  46. Bafana A, Chakrabarti T, Muthal P, Kanade G (2009) Detoxification of benzidine-based azo dye by E. gallinarum: Time-course study. Ecotoxicol Env Safety 72:960–964

    Article  CAS  Google Scholar 

  47. Jadhav JP, Govindwar SP (2006) Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast 23:315–323

    Article  CAS  Google Scholar 

  48. Khehra MS, Saini HS, Sharma DK et al (2005) Decolorization of various azo dyes by bacterial consortia. Dyes Pigm 67:55–61

    Article  CAS  Google Scholar 

  49. Khehra MS, Saini HS, Sharma DK, Chadha BS, Chimni SS (2005) Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes. Wat Res 39:5135–5141

    Article  CAS  Google Scholar 

  50. Kornillowicz-Kowalska TK, Wrzosek M, Ginalska G, Iglik H, Bancerz R (2006) Identification and application of a new fungal strain Bjerkandera audusta R59 in decolorization of daunomycin wastes. Enz Microbial Technol 38:583–590

    Article  CAS  Google Scholar 

  51. Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeter Biodegr 59:73–84

    Article  CAS  Google Scholar 

  52. Busse HJ, Kampfer P, Denner EBM (1999) Chemotaxonomic characterization of Sphingomonas. J Industr Microbiol Biotechnol 23:242–251

    Article  CAS  Google Scholar 

  53. David CW, Susan DS, David BR (1996) The genus Sphingomonas: physiology and ecology. Curr Opinion Biotechnol 7:301–306

    Article  Google Scholar 

  54. Jin R, Zhou J, Zhang A, Wang J (2008) Bioaugmentation of the decolorization rate of acid red GR by genetically engineered microorganism Escherichia coli JM109 (pGEX-AZR). World J Microbiol Biotechnol 24:23–29

    Article  CAS  Google Scholar 

  55. Jin R, Yang H, Zhang A, Wang J, Liu G (2009) Bioaugmentation on decolorization of C.I. Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR). J Hazard Mat 163:1123–1128

    Article  CAS  Google Scholar 

  56. Wagner M, Loy A, Nogueria R, Purkhold U et al (2002) Microbial community composition and function in wastewater treatment plants. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 81:665–680

    Article  CAS  Google Scholar 

  57. Ghodake G, Jadhav S, Dawkar V, Govindwar S (2009) Biodegradation of diazo dye Direct brown MR by Acinetobacter calcoaceticus NCIM 2890. Int Biodeter Biodegr. doi:10.1016/j.ibiod.2008.12.002

    Google Scholar 

  58. Joshi T, Iyengar L, Singh K, Garg S (2008) Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes. Bioresour Technol 99:7115–7121

    Article  CAS  Google Scholar 

  59. Deng D, Guo J, Zeng G, Sun G (2008) Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. Int Biodeter Biodegr 62:263–269

    Article  CAS  Google Scholar 

  60. Kolekar YM, Pawar SP, Gawai KR, Lokhande PD, Shouche YS, Kodam KM (2008) Decolorization and degradation of Disperse Blue 79 and Acid Orange 10, by Bacillus fusiformis KMK5 isolated from the textile dye contaminated soil. Bioresour Technol 99:8999–9003

    Article  CAS  Google Scholar 

  61. Gopinath KP, Meera Sahib HA, Muthukumar K, Velan M (2009) Improved biodegradation of congored by using Bacillus sp. Bioresour Technol 100:670–675

    Article  CAS  Google Scholar 

  62. Mabrouk MEM, Yousef HY (2008) Decolorization of Fast Red by Bacillus subtilis HM. J Appl Sci Res 4:262–268

    CAS  Google Scholar 

  63. Dave SR, Dave RH (2009) Isolation and characterization of Bacillus thuringiensis for Acid red 119 dye decolourization. Bioresour Technol 100:249–253

    Article  CAS  Google Scholar 

  64. Bafana A, Chakrabarti T, Devi SS (2008) Azoreductase and dye detoxification activities of Bacillus velezensis strain AB. Env Biotechnol 77:1139–1144

    CAS  Google Scholar 

  65. Wang H, Su JQ, Zheng XW (2009) Bacterial decolourization and degradation of the reactive dye reactive red 180 by Citrobacter sp. CK3. Int Biodeter Biodegr 63:395–399

    Article  CAS  Google Scholar 

  66. Bafana A, Krishnamurthi K, Devi SS, Chakarbrati T (2008) Bilogical decolourization of C.I. direct black 38 by Enterococcus gallinarum. J Hazard Mat 157:187–193

    Article  CAS  Google Scholar 

  67. Chang JS, Kuo TS, Chao YP, Ho JY, Lin PJ (2000) Azo dye decolorization with a mutant Escherichia coli strain. Biotechnol Lett 22:807–812

    Article  CAS  Google Scholar 

  68. Isik M, Sponza DT (2003) Effect of oxygen on decolorization of azo dyes by Escherichia coli and Pseudomonas sp. and fate of aromatic amines. Process Biochem 38:1183–1192

    Article  CAS  Google Scholar 

  69. Liu G, Zhou J, Wang J (2009) Acceleration of azo dye decolorization by using quinone reductase activity of azoreductase and quinone redox mediator. Bioresour Technol 100:2791–2795

    Article  CAS  Google Scholar 

  70. Guo J, Zhou J, Wang D et al (2008) The new incorporation bio-treatment technology of bromoamine acid and azo dyes wastewater under high salt conditions. Biodegr 19:93–98

    Article  CAS  Google Scholar 

  71. Guo J, Zhou J, Wang D, Tian C, Wang Ping M, Uddin S (2008) A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegr 19:15–19

    Article  CAS  Google Scholar 

  72. Guo J, Fang MA, Jiang K, Cui D (2008) Bioaugmentation combined with biofilim process in the treatment of petrochemical wastewater at low temperatures. J Wat Resour Protect 1:1–65

    Google Scholar 

  73. Asad S, Amoozegar MA, Pourbabaee AA et al (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98:2082–2088

    Article  CAS  Google Scholar 

  74. Vijaykumar MH, Vaishampayan PA, Shouche YS, Karegoudar TB (2007) Decolourization of naphthalene-containing sulfonated azo dyes by Kerstersia sp. strain VKY1. Enz Microbial Technol 40:204–211

    Article  CAS  Google Scholar 

  75. Seesuriyachan P, Takenaka S, Kuntiya A (2007) Metabolism of azo dyes by Lactobacillus casei TISTR 1500 and effects of various factors on decolorization. Wat Res 41:985–992

    Article  CAS  Google Scholar 

  76. Moosvi S, Kher X, Madamwar D (2007) Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes Pigm 74:723–729

    Article  CAS  Google Scholar 

  77. Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP (2009) Enhanced decolorization of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresour Technol 100:2493–2500

    Article  CAS  Google Scholar 

  78. Hu TL (2001) Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola. Wat Sci Technol 43:261–269

    CAS  Google Scholar 

  79. Silveira E, Marques PP, Silva SS (2009) Selection of Pseudomonas for industrial textile dyes decolourization. Int Biodeter Biodegr 63:230–235

    Article  CAS  Google Scholar 

  80. Kalme S, Jadhav S, Jadhav M, Govindwar S (2009) Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enz Microbial Technol 44:65–71

    Article  CAS  Google Scholar 

  81. Ben-Mansour H, Mosrati R, Corroler D et al (2009) In vitro mutagenicity of Acid Violet 7 and its degradation products by Pseudomonas putida mt-2: correlation with chemical structures. Env Toxicol Phamacol 27:231–236

    Article  CAS  Google Scholar 

  82. Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J of Hazard Mat 163:735–742

    Article  CAS  Google Scholar 

  83. Wang X, Cheng X, Sun D, Hong Q (2008) Biodecolorization and partial mineralization of Reactive black 5 by a strain of Rhodopseudomonas palustris. J Env Sci 20:1218–1225

    Article  CAS  Google Scholar 

  84. Xu M, Guo J, Sun G (2007) Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions. Appl Microbiol Biotechnol 76:719–726

    Article  CAS  Google Scholar 

  85. Xu M, Guo J, Cen Y et al (2005) Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from activated sludge of a wastewater treatment plant. Int J Syst Evol Microbiol 55:363–368

    Article  CAS  Google Scholar 

  86. Pearce CI, Christie R, Boothman C et al (2006) Reactive azo dye reduction by Shewanella strain J18 143. Biotechnol Bioengin 95:692–703

    Article  CAS  Google Scholar 

  87. Fan L, Zhu S, Liu D, Ni J (2009) Decolorization of 1-amino-4-bromoanthraquinone-2-sulfonic acid by a newly isolated strain of Sphingomonas herbicidovorans. Int Biodeter Biodegr 63:88–92

    Article  CAS  Google Scholar 

  88. Chang JS, Chen BY, Lin YC (2004) Stimulation of bacterial decolorization of an azo dye by extracellular metabolites from Escherichia coli strain NO3. Bioresour Technol 91:243–248

    Article  CAS  Google Scholar 

  89. He F, Hu W, Li Y (2004) Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium. Chemosphere 57:293–301

    Article  CAS  Google Scholar 

  90. Nigam P, Banat IM, Singh D, Marchant R (1996) Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem 31:435–442

    Article  CAS  Google Scholar 

  91. Hong Y, Xu M, Guo J et al (2007) Respiration and growth of Shewanella decolorations S12 with an azo compound as the sole electron acceptor. Appl Env Microbiol 73:64–72

    Article  CAS  Google Scholar 

  92. Chang JS, Lin YC (2001) Decolorization kinetics of recombinant E. coli strain harboring azo dye decolorization determinants for Rhodococcus sp. Biotechnol Lett 23:631–636

    Article  CAS  Google Scholar 

  93. Chang JS, Chou C, Lin Y, Ho J, Hu TL (2001) Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Wat Res 35:2041–2850

    Google Scholar 

  94. Chen KC, Huang WT, Wu YJ, Houng JY (1999) Microbial decolorization of azo dyes by Proteus mirabilis. J Industr Microbiol Biotechnol 23:686–690

    Article  CAS  Google Scholar 

  95. Chen KC, Wu JY, Liou DJ, Hwang SJ (2003) Decolorization of textile dyes by newly isolated bacterial strains. J Biotechnol 101:57–68

    Article  CAS  Google Scholar 

  96. Junnarkar N, Murty DS, Bhatt NS, Madamwar D (2006) Decolorization of diazo dye Direct Red 81 by a novel bacterial consortium. World J Microbiol Biotechnol 22:163–168

    Article  CAS  Google Scholar 

  97. Kalme SD, Parshetti GK, Jadhav SU, Govindwar SP (2007) Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour Technol 98:1405–1410

    Article  CAS  Google Scholar 

  98. Kapdan IK, Kargi F, McMullan G, Marchant R (2000) Decolorization of textile dye stuffs by a mixed bacterial consortium. Biotechnol Lett 22:1179–1181

    Article  CAS  Google Scholar 

  99. Moosvi S, Keharia H, Madamawar D (2005) Decolorization of textile dye Reactive Violet 5 by a newly isolated bacterial consortium RVM11.1. World J Microbiol Biotechnol 21:667–672

    Article  CAS  Google Scholar 

  100. Padmavathy S, Sandhya S, Swaminathan K (2003) Comparison of decolorization of reactive azo dyes by microorganisms isolated from various sources. J Env Sci 15:628–633

    Google Scholar 

  101. Yu J, Wang X, Yue PL (2001) Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains. Wat Res 35:3579–3586

    Article  CAS  Google Scholar 

  102. Chen H (2006) Recent advances in azo dye degrading enzyme research. Curr Protein Pept Sci 7:101–111

    Article  CAS  Google Scholar 

  103. Blümel S, Knackmuss HJ, Stolz A (2002) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl Env Microbiol 68:3948–3955

    Article  CAS  Google Scholar 

  104. Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Env Microbiol 66:1429–1434

    Article  CAS  Google Scholar 

  105. Keck A, Klein J, Kudlich M et al (1997) Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Appl Environ Microbiol 63:3684–3690

    CAS  Google Scholar 

  106. Kudlich M, Keck A, Klein J, Stolz A (1997) Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Appl Env Microbiol 63:3691–3694

    CAS  Google Scholar 

  107. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biresour Technol 77:247–255

    Article  CAS  Google Scholar 

  108. Rau J, Knackmuss HJ, Stolz A (2002) Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Env Sci Technol 36:1497–1504

    Article  CAS  Google Scholar 

  109. Brigé A, Motte B, Borloo J, Buysschaert G, Devreese B, Jozef J, Beeumen V (2008) Bacterial decolorization of textile dyes is an extracellular process requiring a multicomponent electron transfer pathway. Microbial Biotechnol 1:40–52

    Google Scholar 

  110. Kudlich M, Hetheridge MJ, Knackmuss HJ, Stolz A (1999) Autoxidation reactions of different aromatic o-aminohydroxynaphthalenes that are formed during the anaerobic reduction of sulfonated azo dyes. Env Sci Technol 33:869–901

    Google Scholar 

  111. Rafii F, Cerniglia CE (1993) Comparison of the azoreductase and nitroreductase from Clostridium perfringens. Appl Env Microbiol 59:1731–1734

    CAS  Google Scholar 

  112. Rafii F, Cerniglia CE (1995) Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract. Env Health Persp 103:17–19

    Article  CAS  Google Scholar 

  113. Rafii F, Franklin W, Cerniglia CE (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Env Microbiol 56:2146–2151

    CAS  Google Scholar 

  114. Rafii F, Smith DB, Benson RW, Cerniglia CE (1992) Immunological homology among azoreductases from Clostridium and Eubacterium strains isolated from human intestinal microflora. J Basic Microbiol 32:99–105

    Article  CAS  Google Scholar 

  115. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  Google Scholar 

  116. Fewson CA (1988) Biodegradation of xenobiotics and other persistent compounds: the causes of recalcitrance. Trends Biotechnol 6:148–153

    Article  CAS  Google Scholar 

  117. Ganesh R, Boardman GD, Michelson D (1994) Fate of azo dyes in sludges. Wat Res 28:1367–1376

    Article  CAS  Google Scholar 

  118. Pagga U, Brown D (1986) The degradation of dyestuffs: part II. behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere 15:479–491

    Article  CAS  Google Scholar 

  119. Pagga U, Taeger K (1994) Development of a method for adsorption of dyestuffs on activated sludge. Wat Res 28:1051–1057

    Article  CAS  Google Scholar 

  120. Shaul GM, Holdsworth TJ, Dempsey CR, Dostal KA (1991) Fate of water-soluble azo dyes in the activated sludge process. Chemosphere 22:107–119

    Article  CAS  Google Scholar 

  121. Ghosh DK, Ghosh S, Sadhukhan P, Mandal A, Chaudhuri J (1993) Purification of two azoreductases from Escherichia coli K12. Ind J Exp Biol 31:951–954

    CAS  Google Scholar 

  122. Ghosh DK, Mandal A, Chaudhuri J (1992) Purification and partial characterization of two azoreductases from Shigella dysenteriae type 1. FEMS Microbiol Lett 98:229–234

    Article  CAS  Google Scholar 

  123. Suzuki T, Timofei S, Kurunczi L et al (2001) Correlation of aerobic biodegradability of sulfonated azo dyes with the chemical structure. Chemosphere 45:1–9

    Article  CAS  Google Scholar 

  124. Zimmermann T, Gasser F, Kulla H, Leisinger T (1984) Comparison of two bacterial azoreductases acquired during adaptation to growth on azo dyes. Arch Microbiol 138:37–43

    Article  CAS  Google Scholar 

  125. Zimmermann T, Kulla H, Leisinger T (1982) Properties of purified orange II-azoreductase, the en zyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 129:197–203

    Article  CAS  Google Scholar 

  126. Hitz HR, Huber W, Reed RH (1978) The absorption of dyes on activated sludge. J Soc Dyers Colorists 94:71–76

    Article  CAS  Google Scholar 

  127. Chen H, Wang RF, Cerriglia CE (2004) Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Exp Purif 34:302–310

    Article  CAS  Google Scholar 

  128. Walker R, Ryan AJ (1971) Some molecular parameters influencing rate of reduction of azo compounds by intestinal microflora. Xenobiotica 4–5:483–486

    Article  Google Scholar 

  129. Beydilli MI, Pavlostathis SG, Tincher WC (2000) Biological decolorization of the azo dye Reactive Red 2 under various oxidation-reduction conditions. Wat Env Res 72:698–705

    Article  CAS  Google Scholar 

  130. Kulla HG (1981) Biodegradation of synthetic organic colorants. In: Leisinger T, Hutter R, Cook AM, Nuesch J (eds) Microbial degradation of xenobiotics and recalcitrant compounds: FEMS Symposium no. 12. London, UK: compounds: FEMS Symposium no. 12. London, UK: X Swiss Society of Microbiology on behalf of the Federation of European Microbiological Societies

    Google Scholar 

  131. Martins MA, Cardoso MH, Queiroz MJ, Ramalho MT, Campos AMO (1999) Biodegradation of azo dyes by the yeast Candida zeylanoides in batch aerated cultures. Chemosphere 38:2455–2460

    Article  CAS  Google Scholar 

  132. Ozdemir G, Pazarbasi B, Kocyigit A, Omeroglu EE, Yasa I, Karaboz I (2008) Decolorization of Acid Black 210 by Vibrio harveyi TEMS1 a newly isolated bioluminescent bacterium from Izmir Bay Turkey. World J Microbiol Biotechnol 24:1375–1381

    Article  Google Scholar 

  133. Guo JB, Zhou JT, Wang D et al (2007) Biocatalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria. Wat Res 41:426–432

    Article  CAS  Google Scholar 

  134. Kumar K, Devi SS, Krishnamurthi K (2006) Decolorisation, biodegradation and detoxification of benzidine based azo dye. Bioresour Technol 97:407–413

    Article  CAS  Google Scholar 

  135. Isik M, Sponza DT (2004) Decolorization of azo dyes under batch anaerobic and sequential anaerobic/aerobic conditions. J Env Sci Health 39:1107–1127

    Article  CAS  Google Scholar 

  136. Panswad T, Iamsamer K, Anotai J (2001) Decolorization of azo reactive dye by polyphosphate and glycogen accumulating organisms in an anaerobic aerobic sequencing batch reactor. Bioresour Technol 76:151–159

    Article  CAS  Google Scholar 

  137. Xingzu W, Xiang C, Dezhi S, Hong Q (2008) Biodecolorization and partial mineralization of Reactive Black 5 by a strain of Rhodopseudomonas palustris. J Env Sci 20:1218–1225

    Article  Google Scholar 

  138. Kalyani DC, Patil PS, Jadhav JP, Govindwar SP (2008) Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour Technol 99:4635–4841

    Article  CAS  Google Scholar 

  139. Adedayo O, Javadpour S, Taylor C, Anderson WA, Moo-Young M (2004) Decolorization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant. World J Microbiol Biotechnol 20:545–550

    Article  CAS  Google Scholar 

  140. Coughlin MF, Kinkle BK, Bishop PL (1999) Degradation of azo dyes containing amino naphthol by Sphingomonas sp. strain ICX. J Industr Microbiol Biotechnol 23:341–346

    Article  CAS  Google Scholar 

  141. Goldstein RM, Mallory LM, Alexander M (1985) Reasons for possible failure of inoculation to enhance biodegradation. Appl Env Microbiol 50:977–983

    CAS  Google Scholar 

  142. Bouchez T, Patureau D, Dabert P et al (2000) Ecological study of a bioaugmentation failure. Env Microbiol 2:179–190

    Article  CAS  Google Scholar 

  143. Marriott CA, Fothergill E, Jeangros B, Scotton M, Louault F (2004) Long term impacts of extensification of grassland management on biodiversity and productivity in upland areas. Agronomie 24:447–462

    Article  Google Scholar 

  144. Guieysse B, Wikstrom P, Forsman M, Mattiasson B (2001) Biomonitoring of continuous microbial community adaptation towards more efficient phenol-degradation in a fed-batch bioreactor. Appl Microbiol Biotechnol 56:780–787

    Article  CAS  Google Scholar 

  145. Kaplan CW, Kitts CL (2004) Bacterial succession in a petroleum land treatment unit. Appl Env Microbiol 70:1777–1786

    Article  CAS  Google Scholar 

  146. Xia X, Bollinger J, Orgam A (1995) Molecular genetic analysis of the response of three soil microbial communities to the application of 2, 4-D. Mol Ecol 4:17–28

    Article  CAS  Google Scholar 

  147. Zeng J, Yang L, Du H, Xiao L, Jiang L, Wu J, Wang X (2009) Bacterioplankton community structure in a eutrophic lake in relation to water chemistry. World J Microbiol Biotechnol 25:763–772

    Article  CAS  Google Scholar 

  148. Liu BB, Zhang F, Feng XX (2006) Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison. FEMS Microbiol Ecol 55:274–286

    Article  CAS  Google Scholar 

  149. Watanabe K, Teramoto M, Futamatta H, Harayama S (1998) Molecular detection, isolation and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Env Microbiol 64:4396–4402

    CAS  Google Scholar 

  150. Daims H, Taylor MW, Wagner M (2006) Wastewater treatment: a model system for microbial ecology. Trends Biotechnol 24:483–489

    Article  CAS  Google Scholar 

  151. Dabert P, Fleurat-Lessard A, Mounier E et al (2001) Monitoring of the microbial community of a sequencing batch reactor bioaugmented to improve its phosphorus removal capabilities. Wat Sci Technol 43:1–3

    CAS  Google Scholar 

  152. Eberl L, Schulze R, Ammendola A, Geisenberger O, Erhart R, Sternberg C, Molin S, Amann R (1997) Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiol Lett 149:77–83

    Article  CAS  Google Scholar 

  153. Oerther DB, Danalewich J, Dulekgurgen E (1998) Bioaugmentation of sequencing batch reactors for biological phosphorus removal: comparative rRNA sequence analysis and hybridization with oligonucleotide probes. Wat Sci Technol 37:469–473

    Article  CAS  Google Scholar 

  154. Urakawa H, Noble PA, El-Fantroussi S, Kelly JJ, Stahi DA (2002) Single base pair discrimination of terminal mismatches by using oligonucleotide microarrays and neutral network analyses. Appl Environ Microbiol 68:235–244

    Article  CAS  Google Scholar 

  155. Wagner M, Loy A (2002) Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13:218–227

    Article  CAS  Google Scholar 

  156. Rittmann BE (2006) Microbial ecology to manage processes in environmental biotechnology. Trends Biotechnol 24:261–266

    Article  CAS  Google Scholar 

  157. Zhao XQ, Yang LY, Yu ZY et al (2008) Characterization of depth-related microbial communities in lake sediment by denaturing gradient gel electrophoresis of amplified 16S rRNA fragments. J Env Sci 20:224–230

    Article  Google Scholar 

  158. Zheng XH, Xiao L, Ren J, Yang LY (2008) The effect of a Microcystis aeruginosa bloom on the bacterioplankton community composition of Lake Xuanwu. J Freshwater Ecol 23:297–304

    CAS  Google Scholar 

  159. Abraham TE, Senan RC, Shaffiqu TS, Roy JJ, Poulose TP, Thomas PP (2003) Bioremediation of textile azo dyes by an aerobic bacterial consortium using a rotating biological contactor. Biotechnol Prog 19:1372–1376

    Article  CAS  Google Scholar 

  160. Boon N, Top EM, Verstraete W, Siciliano SD (2003) Bioaugmentation as a tool to protect the structure and function of an activated-sludge microbial community against a 3-chloroaniline shock load. Appl Env Microbiol 69:1511–1520

    Article  CAS  Google Scholar 

  161. Eschenhagena M, Schupplerb M, Oskea IR (2003) Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Wat Res 37:3224–3232

    Article  CAS  Google Scholar 

  162. Niu SQ, Fukushima J, Jiang Y, Ishikawa Y, Ueda T, Matsumoto S (2006) Analysis of bacterial community structure in the natural circulation system wastewater bioreactor by using a 16S rRNA gene clone library. Microbiol Immunol 50:937–950

    CAS  Google Scholar 

  163. Padayachee P, Ismail A, Bux F (2006) Elucidation of the microbial community structure within a laboratory-scale activated sludge process using molecular techniques. Wat SA 32:679–686

    Google Scholar 

  164. Weber SD, Ludwig W, Schleifer KH, Fried J (2007) Microbial composition and structure of aerobic granular sewage biofilms. Appl Env Microbiol 73:6233–6240

    Article  CAS  Google Scholar 

  165. Yan X, Xu Z, Feng X, Liu Y, Liu B, Zhang X, Zhu C, Zhao L (2007) Cloning of environmental genomic fragments as physical markers for monitoring microbial populations in coking wastewater treatment system. Microbial Ecol 53:163–172

    Article  Google Scholar 

  166. Yan X, Xu Z, Feng X et al (2007) Cloning of environmental genomic fragments as physical markers for monitoring microbial populations in coking wastewater treatment system 53:163–172

    Google Scholar 

  167. Wakelin SA, Colloff MJ, Kookana RS (2008) Assessing the effect of wastewater treatment pLANT effluent on microbial function and community structure in the sediment of a freshwater stream with variable seasonal flow. Appl Env Microbiol 74:2659–2668

    Article  CAS  Google Scholar 

  168. Khelifi E, Bouallagui H, Touhami Y, Godon JJ, Hamdi M (2009) Bacterial monitoring by molecular tools of a continuous stirred tank reactor treating textile wastewater. Bioresour Technol 100:629–633

    Article  CAS  Google Scholar 

  169. Kragelund C, Nielsen JL, Thomsen TR, Nielsen PH (2005) Ecophysiology of the filamentous Alphaproteobacterium Meganema perideroedes in activated sludge. FEMS Microbiol Ecol 54:111–122

    Article  CAS  Google Scholar 

  170. Martins AM, Pagilla K, Heijnen JJ, van Loosdrecht MCM (2004) Filamentous bulking sludge-a critical review. Wat Res 38:793–817

    Article  CAS  Google Scholar 

  171. Nielsen PH, Roslev P, Dueholm TE, Nielson JL (2002) Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants. Wat Sci Technol 46:73–80

    CAS  Google Scholar 

  172. Fu L, Wen X, Lu Q, Qian Y (2001) Treatment of dyeing wastewater in two SBR systems. Process Biochem 36:1111–1118

    Article  CAS  Google Scholar 

  173. Kardi F, Eker S, Uygur A (2005) Biological treatment of synthetic wastewater containing 2, 4- dichlorophenol(DCP) in an activated sludge unit. J Env Manage 76:191–196

    Article  CAS  Google Scholar 

  174. Castillo L, El Khorassani H, Trebuchon P, Thomas O (1999) UV treatability test for chemical and petrochemical wastewater. Wat Sci Tech 39:17–23

    Article  CAS  Google Scholar 

  175. FitzGerald SW, Bishop PL (1995) Two stage anaerobic/aerobic treatment of sulfonated azo dyes. J Env Sci Health 30:1251–1276

    Article  Google Scholar 

  176. Carvalho MC, Pereira C, Gonc-alves IC, Pinheiro HM, Santos AR, Lopes A, Ferra MI (2008) Assessment of the biodegradability of a monosulfonated azo dye and aromatic amines. Int Biodeter Biodegr 62:96–103

    Article  CAS  Google Scholar 

  177. Ong SA, Toorisaka E, Hirata M, Hano T (2006) Decolorization behavior of azo dye with various co-substrate dosages under granular activated carbon-biofilm configured packed column operation. ARPN J Engin Appl Sci 1:29–34

    Google Scholar 

  178. Coughlin MF, Kinkle BK, Bishop PL (2002) Degradation of Acid Orange 7 in an aerobic biofilm. Chemosphere 46:11–19

    Article  CAS  Google Scholar 

  179. Bras R, Ferra MIA, Pinheiro HM, Goncalves IC (2001) Batch test for assessing decolorization of azo dyes by methanogenic and mixed cultures. J Biotechnol 89:155–162

    Article  CAS  Google Scholar 

  180. Goncalves IMC, Gomes A, Bras R et al (2000) Biological treatment of effluent containing textile dyes. J Soc Dyers Colourists 116:393–397

    CAS  Google Scholar 

  181. Sponza DT, Isık M (2004) Decolorization and inhibition kinetic of Direct Black 38 azo dye with granulated anaerobic sludge. Microbial Technol 34:147–154

    Article  CAS  Google Scholar 

  182. Plumb JJ, Bell J, Stuckey DC (2001) Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor. Appl Env Microbiol 67:3226–3235

    Article  CAS  Google Scholar 

  183. Haug W, Schmidt A, Nortemann B (1991) Mineralization of the sulphonated azo dye mordant yellow 3 by a 6-aminonaphthatene-2-sulphonate-degrading bacterium consortium. Appl Env Microbiol 57:3144–3149

    CAS  Google Scholar 

  184. Rajaguru P, Kalaiselvi K, Palanivel M, Subburam V (2000) Biodegradation of azo dyes in a sequential anaerobic-aerobic system. Appl Microbiol Biotechnol 54:268–273

    Article  CAS  Google Scholar 

  185. Togo CA, Mutambanengwe CCZ, Whiteley CG (2008) Decolourisation and degradation of textile dyes using a sulphate reducing bacteria (SRB)–biodigester microflora co-culture. African J Biotechnol 7:114–121

    CAS  Google Scholar 

  186. Yoo ES, Libra J, Adrian L (2001) Mechanism of decolorization of azo dyes in anaerobic mixed culture. J Env Engin 127:844–849

    Article  CAS  Google Scholar 

  187. Oxspring DA, McMullan G, Smyth WF, Marchant R (1996) Decolorization and metabolism of the reactive textile dye Remazol-Black-B by an immobilized microbial consortium. Biotechnol Lett 18:527–530

    Article  CAS  Google Scholar 

  188. Lourenco ND, Novais JM, Pinheiro HM (2000) Reactive textile dye colour removal in a sequencing batch reactor. Wat Sci Technol 42:321–328

    CAS  Google Scholar 

  189. Lourenco ND, Novais JM, Pinheiro HM (2001) Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor. J Biotechnol 89:163–174

    Article  CAS  Google Scholar 

  190. O’Neill C, Hawks FR, Hawks DL (1999) Colour in textile effluents-sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018

    Article  Google Scholar 

  191. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye- containing effluents. Bioresour Technol 58:217–227

    Article  CAS  Google Scholar 

  192. Mendez-Paz D, Omil F, Lema JM (2005) Anaerobic treatment of azo dye Acid Orange 7 under fed-batch and continuous conditions. Wat Res 39:771–778

    Article  CAS  Google Scholar 

  193. Santos AB (2005) Reductive decolourisation of dyes by thermophilic anaerobic granular sludge. PhD Thesis, Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  194. Uddin MS, Zhou J, Qu Y, Guo J, Wang P, Zhao L (2007) Biodecolorization of azo dye Acid Red B under high salinity condition. Bull Environ Contam Toxicol 79:440–444

    Article  CAS  Google Scholar 

  195. Rieger PG, Meier HM, Gerle M, Vogt U, Groth T, Knackmuss HJ (2002) Xenobiotics in the enviornment: present and future strategies to obviate the problem of biological persistence. J Biotechnol 94:101–123

    Article  CAS  Google Scholar 

  196. Snyderwine EG, Sinha R, Felton JS, Ferguson LR (2002) Highlights of the eighth international conference on carcinogenic mutagenic N-substituted aryl compounds. Mut Res 506–507:1–8

    Google Scholar 

  197. van der Zee FP, Villaverde S (2005) Combined anaerobic aerobic treatment of azo dyes a short review of bioreactor studies. Wat Res 39:1425–1440

    Article  CAS  Google Scholar 

  198. Carliell CM, Barclay N, Buckley CA (1996) Treatment of exhausted reactive dye bath effluent using anaerobic digestion laboratory and full-scale trials. Wat SA 22:225–233

    CAS  Google Scholar 

  199. Kapdan IK, Alparslan S (2005) Application of anaerobic–aerobic sequential treatment system to real textile wastewater for color and COD removal. Enz Microbial Technol 36:273–279

    Article  CAS  Google Scholar 

  200. Kargi F, Uygur A (1996) Biological treatment of saline wastewater in an aerated percolator unit utilizing halophilic bacteria. Env Technol 17:325–330

    Article  CAS  Google Scholar 

  201. Karigi F, Dincer AR (1998) Saline wastewater treatment by halophile supplemented activated sludge culture in an aerated rotating biodisc contactor. Enz Microbial Technol 122:427–433

    Article  Google Scholar 

  202. Lee YH, Pavlostathis SG (2004) Reuse of textile reactive azo dyebaths following biological decolorization. Wat Env Res 76:56–66

    Article  CAS  Google Scholar 

  203. Lee YH, Matthews RD, Pavlostathis SG (2005) Anaerobic biodecolorization of textile reactive anthraquinone and phthalocyanine dyebaths under hypersaline conditions. Wat Sci Technol 52:377–383

    CAS  Google Scholar 

  204. Panswad T, Anan C (1999) Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds. Wat Res 33:1165–1172

    Article  CAS  Google Scholar 

  205. Woolard CR, Irvine RL (1995) Treatment of hypersaline wastewater in the sequencing batch reactor. Wat Res 29:1159–1168

    Article  CAS  Google Scholar 

  206. Park D, Leeb DS, Jounga JY, Park JM (2005) Comparison of different bioreactor systems for indirect H2S removal using iron-oxidizing bacteria. Process Biochem 40:1461–1467

    Article  CAS  Google Scholar 

  207. Feng XH, Ou LT, Ogram A (1997) Plasmid-mediated mineralization of carbofuran by Sphingomonas sp. strain CF06. Appl Env Microbiol 63:1332–1337

    CAS  Google Scholar 

  208. Kariminaai-Hamedaani HR, Kanda K, Kato F (2003) Wastewater trewatment with bacteria immobilized onto a ceramic carrier in an aerated system. J Biosci Bioengin 2:128–132

    Google Scholar 

  209. Martin M, Mengs G, Plaza E, Garbi C, Sanchez M, Gibello A, Gutierrez F, Ferrer E (2000) Propachlor removal by Pseudomonas strain GCHII in an immobilized cell system. Appl Env Microbiol 66:1190–1194

    Article  CAS  Google Scholar 

  210. Park YS, Yun JW, Kim DS, Song SK (1998) Wastewater treatment in packed bed reacter with immobilized cells onto ceramic carriers. Biotechnol Tech 12:459–462

    Article  CAS  Google Scholar 

  211. Peres CM, van Aken B, Naveau H, Agathos SN (1999) Continuous degradation of mixtures of 4- nitrobenzoate and 4- aminobenzoate by immobilized cells of Bulkholderia cepacia strain PB4. Appl Micobiol Biotechnol 52:440–445

    Article  CAS  Google Scholar 

  212. Xu P, Quian XM, Wang YX, Xu YB (1996) Modelling for waste water treatment Rhodopseudomonas palastris Y6 immobilized on fiber in a columnar bioreacter. Appl Microbiol Biotechnol 44:676–682

    Article  CAS  Google Scholar 

  213. Guimarães C, Porto P, Oliveira R, Mota M (2005) Continuous decolourization of a sugar refinery wastewater in a modified rotating biological contactor with phanerochaete chrysosporium immobilized on polyurethane foam disks. Process Biochem 40:535–540

    Article  CAS  Google Scholar 

  214. Hadjiev D, Dimitrov D, Martinov M, Sire O (2007) Enhancement of the biofilm formation on polymeric supports by surface conditioning. Enz Microbial Technol 40:840–848

    Article  CAS  Google Scholar 

  215. Zaiat M, Cabral AKA, Foresti E (1996) Cell washout and external mass transfer risistance in horizontal-flow anaerobic immobilized sludge reactor. Wat Res 30:2435–2439

    Article  CAS  Google Scholar 

  216. Nojiri H, Shintani M, Omori T (2004) Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl Microbiol Biotechnol 64:154–174

    Article  CAS  Google Scholar 

  217. Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ. Nature Rev Microbiol 3:700–710

    Article  CAS  Google Scholar 

  218. Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds Curr Opin Biotechnol 14:262–269

    CAS  Google Scholar 

  219. Springael D, Top EM (2004) Horizontal gene transfer and microbial adaptation to xenobiotics: new types of mobile genetic elements and lessons from ecological studies. Trends Microbiol 12:53–58

    Article  CAS  Google Scholar 

  220. Top EM, Springael D, Boon N (2002) Catabolic mobile genetic elements and their potential use in bioremediation of polluted soils and waters. FEMS Microbiol Ecol 42:199–208

    Article  CAS  Google Scholar 

  221. van der Meer JR, Sentchilo V (2003) Genomic islands and the evolution of catabolic pathways in bacteria. Curr Opin Biotechnol 14:248–254

    Article  CAS  Google Scholar 

  222. van Elsas JD, Bailey MJ (2002) The ecology of transfer of mobile genetic elements. FEMS Microbiol Ecol 42:187–197

    Google Scholar 

  223. van Elsas JD, Duarte GF, Keijzer WA, Smit E (2000) Analysis of dynamics of fungal specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Methods 43:133–151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Crowley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khalid, A., Arshad, M., Crowley, D. (2010). Bioaugmentation of Azo Dyes. In: Atacag Erkurt, H. (eds) Biodegradation of Azo Dyes. The Handbook of Environmental Chemistry, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2009_42

Download citation

Publish with us

Policies and ethics