Skip to main content
Log in

Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacteria adapt rapidly to environmental stimuli, such as exposure to xenobiotics. Mobile genetic elements (MGEs) play a major role in such bacterial adaptation, via the dispersal of catabolic capacity; and, in fact, genes that encode the degradation enzymes for xenobiotics are often located on MGEs. The list of reported catabolic MGEs keeps growing as researchers continue to isolate and characterize xenobiotic degraders and the corresponding catabolic genes. Major catabolic MGEs include (conjugative) plasmids, transposons, and conjugative transposons. Catabolic transposons can be divided into class I elements (composite transposons) and class II elements (Tn3 family transposons). This review includes a comprehensive list of naturally occurring discrete catabolic MGEs, together with a brief description for each. While MGEs are often rather large, genome-wide or large-scale sequence analyses have provided useful information on the whole genetic structure of MGEs, with clues to their function (transfer, maintenance, catabolism, etc.) and behavior in a complex natural environment. This review also gives an insight into MGE functions, based on the complete sequencing of several catabolic plasmids and two Pseudomonas genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andreoni V, Bestetti G (1986) Comparative analysis of different Pseudomonas strains that degrade cinnamic acid. Appl Environ Microbiol 52:930–934

    CAS  PubMed  Google Scholar 

  • Anson JG, Mackinnon G (1984) Novel Pseudomonas plasmid involved in aniline degradation. Appl Environ Microbiol 48:868–869

    CAS  Google Scholar 

  • Arber W (2000) Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev 24:1–7

    Article  CAS  PubMed  Google Scholar 

  • Armengaud J, Happe B, Timmis KN (1998) Genetic analysis of dioxin dioxygenase of Sphingomonas sp. strain RW1: catabolic genes dispersed on the genome. J Bacteriol 180:3954–3966

    PubMed  Google Scholar 

  • Assinder SJ, Williams PA (1988) Comparison of the meta pathway operons on NAH plasmid pWW60-22 and TOL plasmid pWW53-4 and its evolutionary significance. J Gen Microbiol 134:2769–2778

    CAS  PubMed  Google Scholar 

  • Baitsch D, Sandu C, Brandsch R, Igloi GL (2001) Gene cluster on pAO1 of Arthrobacter nicotinovorans involved in degradation of the plant alkaloid nicotine: cloning, purification, and characterization of 2,6-dihydroxypyridine 3-hydroxylase. J Bacteriol 2001:5262–5267

    Article  Google Scholar 

  • Bartilson M, Nordlund I, Shingler V (1990) Location and organization of the dimethylphenol catabolic genes of Pseudomonas CF600. Mol Gen Genet 220:294–300

    CAS  PubMed  Google Scholar 

  • Beil S, Timmis KN, Pieper DH (1999) Genetic and biochemical analyses of the tec operon suggest a route for evolution of chlorobenzene degradation genes. J Bacteriol 181:341–346

    CAS  PubMed  Google Scholar 

  • Beilen JB van, Panke S, Lucchini S, Franchini AG, Röthlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630

    PubMed  Google Scholar 

  • Berg DE, Howe MM (1989) Mobile DNA. American Society for Microbiology, Washington, D.C.

  • Bosch R, García-Valdés E, Moore ERB (1999a) Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene 236:149–157

    Article  PubMed  Google Scholar 

  • Bosch R, Moore ERB, García-Valdés E, Pieper DH (1999b) NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. J Bacteriol 181:2315–2322

    CAS  PubMed  Google Scholar 

  • Bosch R, García-Valdés E, Moore ERB (2000) Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10. Gene 245:65–74

    Article  CAS  PubMed  Google Scholar 

  • Burlage RS, Bemis LA, Layton AC, Sayler GS, Larimer F (1990) Comparative genetic organization of incompatibility group P degradative plasmids. J Bacteriol 172:6818–6825

    CAS  PubMed  Google Scholar 

  • Burrus V, Pavlovic G, Decaris B, Guédon G (2002) Conjugative transposons: the tip of the iceberg. Mol Microbiol 46:601–610

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty AM (1972) Genetic basis of the biodegradation of salicylate in Pseudomonas. J Bacteriol 112:815–823

    CAS  PubMed  Google Scholar 

  • Chakrabarty AM (1973) Genetic fusion of incompatible plasmids in Pseudomonas. Proc Natl Acad Sci USA 70:1641–1644

    CAS  PubMed  Google Scholar 

  • Chakrabarty AM, Friello DA, Bopp LH (1978) Transposition of plasmid DNA segments specifying hydrocarbon degradation and their expression in various microorganisms. Proc Natl Acad Sci USA 75:3109–3112

    CAS  PubMed  Google Scholar 

  • Chatterjee DK, Chakrabarty AM (1982) Genetic rearrangements in plasmids specifying total degradation of chlorinated benzoic acids. Mol Gen Genet 188:279–285

    CAS  PubMed  Google Scholar 

  • Chatterjee DK, Chakrabarty AM (1984) Restriction mapping of a chlorobenzoate degradative plasmid and molecular cloning of the degradative genes. Gene 27:173–181

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee DK, Kellogg ST, Hamada S, Chakrabarty AM (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. J Bacteriol 146:639–646

    CAS  PubMed  Google Scholar 

  • Churchward G (2002) Conjugative transposons and related mobile elements. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. American Society for Microbiology, Washington, D.C., pp 177–191

  • Clément P, Pieper DH, González B (2001) Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid. Microbiology 147:2141–2148

    PubMed  Google Scholar 

  • Dabrock B, Keβeler M, Averhoff B, Gottschalk G (1994) Identification and characterization of a transmissible linear plasmid from Rhodococcus erythropolis BD2 that encodes isopropylbenzene and trichloroethene catabolism. Appl Environ Microbiol 60:853–860

    CAS  PubMed  Google Scholar 

  • Dehmel U, Engesser KH, Timmis KN, Dwyer DF (1995) Cloning, nucleotide sequence, and expression of the gene encoding a novel dioxygenase involved in metabolism of carboxydiphenyl ethers in Pseudomonas pseudoalcaligenes POB310. Arch Microbiol 163:35–41

    Article  CAS  PubMed  Google Scholar 

  • Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686

    CAS  PubMed  Google Scholar 

  • Don RH, Weightman AJ, Knackmuss HJ, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dicholorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4). J Bacteriol 161:85–90

    CAS  PubMed  Google Scholar 

  • Dorn E, Hellwig M, Reineke W, Knackmuss HJ (1974) Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99:61–70

    PubMed  Google Scholar 

  • Dunn NW, Gunsalus IC (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol 114:974–979

    CAS  PubMed  Google Scholar 

  • Dutton JR, Venables WA, Saint CP (1995) Comamonas acidovorans UCC61 catabolizes o-phthalate via a 4,5-oxygenation pathway that is encoded on a 70 kbp section of plasmid pOPH1 bounded by directly repeated sequences. Microbiology 141:1673–1682

    CAS  Google Scholar 

  • Eaton RW (2001) Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol 183:3689–3703

    Article  CAS  PubMed  Google Scholar 

  • Eaton RW, Timmis KN (1986) Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204. J Bacteriol 168:123–131

    CAS  PubMed  Google Scholar 

  • Eaton RW, Selifonova OV, Gedney RM (1998) Isopropylbenzene catabolic pathway in Pseudomonas putida RE204: nucleotide sequence analysis of the ipb operon and neighboring DNA from pRE4. Biodegradation 9:119–132

    Article  CAS  PubMed  Google Scholar 

  • Feng XH, Ou LT, Ogram A (1997) Plasmid-mediated mineralization of carbofuran by Sphingomonas sp. strain CF06. Appl Environ Microbiol 63:1332–1337

    CAS  PubMed  Google Scholar 

  • Foght JM, Westlake DWS (1990) Expression of dibenzothiophene-degradative genes in two Pseudomonas species. Can J Microbiol 36:718–724

    CAS  PubMed  Google Scholar 

  • Fong KPY, Goh CBH, Tan HM (2000) The genes for benzene catabolism in Pseudomonas putida ML2 are flanked by two copies of the insertion element IS1489, forming a class-I-type catabolic transposon, Tn5542. Plasmid 43:103–110

    Article  CAS  PubMed  Google Scholar 

  • Frantz B, Chakrabarty AM (1987) Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation. Proc Natl Acad Sci USA 84:4460–4464

    CAS  PubMed  Google Scholar 

  • Fredrickson JK, Brockman FJ, Workman DJ, Li SW, Stevens TO (1991) Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. Appl Environ Microbiol 57:796–803

    CAS  Google Scholar 

  • Fujii T, Takeo M, Maeda Y (1997) Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA. Microbiology 143:93–99

    CAS  Google Scholar 

  • Fukumori F, Saint CP (1997) Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDN1). J Bacteriol 179:399–408

    CAS  PubMed  Google Scholar 

  • Fulthorpe RR, Wyndham RC (1991) Transfer and expression of the catabolic plasmid pBRC60 in wild bacterial recipients in a freshwater ecosystem. Appl Environ Microbiol 57:1546–1553

    CAS  Google Scholar 

  • Genka H, Nagata Y, Tsuda M (2002) Site-specific recombination system encoded by toluene catabolic transposon Tn4651. J Bacteriol 184:4757–4766

    Article  CAS  PubMed  Google Scholar 

  • Ghosal D, You IS (1988) Nucleotide homology and organization of chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Mol Gen Genet 211:113–120

    CAS  PubMed  Google Scholar 

  • Ghosal D, You IS, Chatterjee DK, Chakrabarty AM (1985) Genes specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and pJP4. Proc Natl Acad Sci USA 82:1638–1642

    CAS  PubMed  Google Scholar 

  • Gioia DD, Peel M, Fava F, Wyndham RC (1998) Structures of homologous composite transposons carrying cbaABC genes from Europe and North America. Appl Environ Microbiol 64:1940–1946

    PubMed  Google Scholar 

  • Greated A, Lambertsen L, Williams PA, Thomas CM (2002) Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ Microbiol 4:856–871

    Article  CAS  PubMed  Google Scholar 

  • Grindley NDF (2002) The movement of Tn3-like elements: transposition and cointegrate resolution. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. American Society for Microbiology, Washington, D.C., pp 272–302

  • Grindley NDF, Reed PR (1985) Transpositional recombination in prokaryotes. Annu Rev Biochem 54:863–896

    Article  CAS  PubMed  Google Scholar 

  • Grinsted J, Cruz F de la, Schmitt R (1990) The Tn21 subgroup of bacterial transposable elements. Plasmid 24:163–189

    CAS  PubMed  Google Scholar 

  • Habe H, Ashikawa Y, Saiki Y, Yoshida T, Nojiri H, Omori T (2002) Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil. FEMS Microbiol Lett 211:43–49

    Article  CAS  PubMed  Google Scholar 

  • Habe H, Miyakoshi M, Chung J, Kasuga K, Yoshida T, Nojiri H, Omori T (2003) Phthalate catabolic gene cluster is linked to the angular dioxygenase gene in Terrabacter sp. strain DBF63. Appl Microbiol Biotechnol 61:44–54

    CAS  PubMed  Google Scholar 

  • Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep 2:376–381

    CAS  PubMed  Google Scholar 

  • Harayama S (1994) Codon usage patterns suggest independent evolution of two catabolic operons on toluene-degradative plasmid TOL pWW0 of Pseudomonas putida. J Mol Evol 38:328–335

    CAS  PubMed  Google Scholar 

  • Herrick JB, Stuart-Keil KG, Ghiorse WC, Madsen EL (1997) Natural horizontal transfer of a naphthalene dioxygenase gene between bacterial native to a coal tar-contaminated field site. Appl Environ Microbiol 63:2330–2337

    CAS  PubMed  Google Scholar 

  • Herrmann H, Janke D, Krejsa S, Kunze I (1987) Involvement of the plasmid pPGH1 in the phenol degradation of Pseudomonas putida strain H. FEMS Microbiol Lett 43:133–137

    Article  CAS  Google Scholar 

  • Hopper DJ, Kemp PD (1980) Regulation of enzymes of the 3,5-xylenol-degradative pathway in Pseudomonas putida: evidence for a plasmid. J Bacteriol 142:21–26

    CAS  PubMed  Google Scholar 

  • Hõrak R, Kivisaar M (1998) Expression of the transposase gene tnpA of Tn4652 is positively affected by integration host factor. J Bacteriol 180:2822–2829

    PubMed  Google Scholar 

  • Igloi GL, Brandsch R (2003) Sequence of the 165-kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1-dependent nicotine uptake system. J Bacteriol 185:1976–1986

    Article  CAS  PubMed  Google Scholar 

  • Iida T, Mukouzaka Y, Nakamura K, Kudo T (2002a) Plasmid-borne genes code for an angular dioxygenase involved in dibenzofurans degradation by Terrabacter sp. strain YK3. Appl Environ Microbiol 68:3716–3723

    Google Scholar 

  • Iida T, Mukozaka Y, Nakamura K, Yamaguchi I, Kudo T (2002b) Isolation and characterization of dibenzofuran-degrading actinomycetes: analysis of multiple extradiol dioxygenase genes in dibenzofuran-degrading Rhodococcus species. Biosci Biotechnol Biochem 66:1462–1472

    Article  CAS  PubMed  Google Scholar 

  • Ilves H, Hõrak R, Kivisaar M (2001) Involvement of σs in starvation-induced transposition of Pseudomonas putida transposon Tn4652. J Bacteriol 183:5445–5448

    Article  CAS  PubMed  Google Scholar 

  • Jahnke M, El-Banna T, Klintworth R, Auling G (1990) Mineralization of orthanilic acid is a plasmid-associated trait in Alcaligenes sp. O-1. J Gen Microbiol 136:2241–2249

    CAS  Google Scholar 

  • Junker F, Cook AM (1997) Conjugative plasmids and the degradation of arylsulfonates in Comamonas testosteroni. Appl Environ Microbiol 63:2403–2410

    Google Scholar 

  • Ka JO, Tiedje JM (1994) Integration and excision of a 2,4-dichlorophenoxyacetic acid-degradative plasmid in Alcaligenes paradoxus and evidence of its natural intergeneric transfer. J Bacteriol 176:5284–5289

    CAS  PubMed  Google Scholar 

  • Kasuga K, Nojiri H, Yamane H, Kodama T, Omori T (1997) Cloning and characterization of the genes involved in the degradation of dibenzofuran by Terrabacter sp. strain DBF63. J Ferment Bioeng 84:387–399

    CAS  Google Scholar 

  • Kasuga K, Habe H, Chung JS, Yoshida T, Nojiri H, Yamane H, Omori T (2001) Isolation and characterization of the genes encoding a novel oxygenase component of angular dioxygenase from the Gram-positive dibenzofuran-degrader Terrabacter sp. strain DBF63. Biochem Biophys Res Commun 283:195–204

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Ohtsuki K, Mitsuda H, Yomo T, Negoro S, Urabe I (1994) Insertion sequence IS6100 on plasmid pOAD2, which degrades Nylon oligomers. J Bacteriol 176:1197–1200

    CAS  PubMed  Google Scholar 

  • Kawasaki H, Yahara H, Tonomura K (1981) Isolation and characterization of plasmid pUO1 mediating dehalogenation of haloacetate and mercury resistance in Moraxella sp. B. Agric Biol Chem 45:1477–1481

    CAS  Google Scholar 

  • Keil H, Keil S, Pickup RW, Williams PA (1985) Evolutionary conservation of genes coding for meta pathway enzymes within TOL plasmids pWW0 and pWW53. J Bacteriol 164:887–895

    CAS  PubMed  Google Scholar 

  • Keshavarz T, Lilly MD, Clarke PH (1985) Stability of a catabolic plasmid in continuous culture. J Gen Microbiol 131:1193–1203

    CAS  Google Scholar 

  • Kesseler M, Dabbs, ER, Averhoff B, Gottshalk G (1996) Studies on the isopropylbenzene 2,3-dioxygenase and the 3-isopropylcatechol 2,3-dioxygenase genes encoded by the linear plasmid of Rhodococcus erythropolis BD2. Microbiology 142:3241–3251

    CAS  PubMed  Google Scholar 

  • Kholodii GY, Yurieva OV, Gorlenko ZM, Mindlin SZ, Bass IA, Lomovskaya OL, Kopteva AV, Nikiforov V (1997) Tn5041: a chimeric mercury resistance transposon closely related to the toluene degradative transposon Tn4651. Microbiology 143:2549–2556

    CAS  PubMed  Google Scholar 

  • Kholodii G, Gorlenko Zh, Mindlin S, Hobman J, Nikiforov V (2002) Tn5041-like transposons: molecular diversity, evolutionary relationships and distribution of distinct variants in environmental bacteria. Microbiology 148:3569–3582

    CAS  PubMed  Google Scholar 

  • Kilbane II JJ, Daram A, Abbasian J, Kayser KJ (2002) Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochem Biophys Res Commun 297:242–248

    Article  CAS  PubMed  Google Scholar 

  • Kivisaar M, Hõrak R, Kasak L, Heinaru A, Habicht J (1990) Selection of independent plasmids determining phenol degradation in Pseudomonas putida and the cloning and expression of genes encoding phenol monooxygenase and catechol 1,2-dioxygenase. Plasmid 24:25–36

    CAS  PubMed  Google Scholar 

  • Kivisaar M, Kasak L, Nurk A (1991) Sequence of the plasmid-encoded catechol 1,2-dioxygenase-expressing gene, pheB, of phenol-degrading Pseudomonas sp. strain EST1001. Gene 98:15–20

    Article  CAS  PubMed  Google Scholar 

  • Kosono S, Maeda M, Fuji F, Arai H, Kudo T (1997) Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl Environ Microbiol 63:3282–3285

    Google Scholar 

  • Kulakova AN, Stafford TM, Larkin MJ, Kulakov LA (1995) Plasmid pRTL1 controlling 1-chloroalkane degradation by Rhodococcus rhodochrous NCIMB13064. Plasmid 33:208–217

    CAS  PubMed  Google Scholar 

  • Kulakova AN, Larkin MJ, Kulakov LA (1997) The plasmid-located haloalkane dehalogenase gene from Rhodococcus rhodochrous NCIMB 13064. Microbiology 143:109–115

    CAS  PubMed  Google Scholar 

  • Kunz DA, Chapman PJ (1981) Isolation and characterization of spontaneously occurring TOL plasmid mutants of Pseudomonas putida HS1. J Bacteriol 146:952–964

    CAS  PubMed  Google Scholar 

  • Lawrence JG, Ochman H (2002) Reconciling the many faces of lateral gene transfer. Trends Microbiol 10:1–4

    Article  CAS  PubMed  Google Scholar 

  • Layton AC, Sanseverino J, Wallace W, Corcoran C, Sayler GS (1992) Evidence for 4-chlorobenzoic acid dehalogenation mediated by plasmids related to pSS50. Appl Environ Microbiol 58:399–402

    CAS  PubMed  Google Scholar 

  • Lehrbach PR, McGregor I, Ward JM, Broda P (1983) Molecular relationships between Pseudomonas Inc P-9 degradative plasmids TOL, NAH, and SAL. Plasmid 10:164–174

    CAS  PubMed  Google Scholar 

  • Leisinger T (1983) Microorganisms and xenobiotic compounds. Experientia 39:1183–1220

    CAS  PubMed  Google Scholar 

  • Lloyd-Jones G, Jong C de, Ogden RC, Duetz WA, Williams PA (1994) Recombination of the bph (biphenyl) catabolic genes from plasmid pWW100 and their deletion during growth on benzoate. Appl Environ Microbiol 60:691–696

    CAS  Google Scholar 

  • Mäe AA, Marits RO, Ausmees NR, Kôiv VM, Heinaru AL (1993) Characterization of a new 2,4-dichlorophenoxyacetic acid degrading plasmid pEST4011: physical map and localization of catabolic genes. J Gen Microbiol 139:3165–3170

    Google Scholar 

  • Maeda K, Nojiri H, Shinatani M, Yoshida T, Habe H, Omori T (2003) Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676. J Mol Biol 326:21–33

    Article  CAS  PubMed  Google Scholar 

  • Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183:5684–5697

    CAS  PubMed  Google Scholar 

  • Masai E, Sugiyama K, Iwashita N, Shimizu S, Hauschild JE, Hatta T, Kimbara K, Yano K, Fukuda M (1997) The bphDEF meta-cleavage pathway genes involved in biphenyl/polychlorinated biphenyl degradation are located on a linear plasmid and separated from the initial bphACB genes in Rhodococcus sp. strain RHA1. Gene 187:141–149

    Article  CAS  PubMed  Google Scholar 

  • McClure NC, Venables WA (1987) pTDN1, a catabolic plasmid involved in aromatic amine catabolism in Pseudomonas putida mt-2. J Gen Microbiol 133:2073–2077

    CAS  Google Scholar 

  • Meer JR van der, Sentchilo V (2003) Genomic islands and the evolution of catabolic pathways in bacteria. Curr Opin Biotechnol 14:248–254

    Article  PubMed  Google Scholar 

  • Meer JR van der, Neerven ARW van, Vries EJ de, Vos WM de, Zehnder AJB (1991a) Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J Bacteriol 173:6–15

    PubMed  Google Scholar 

  • Meer JR van der, Zehnder AJB, Vos WM de (1991b) Identification of a novel composite transposable element, Tn5280, carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. J Bacteriol 173:7077–7083

    PubMed  Google Scholar 

  • Meer JR van der, Ravatn R, Sentchilo V (2001) The clc element of Pseudomonas sp. strain B13 and other mobile degradative elements employing phage-like integrases. Arch Microbiol 175:79–85

    Article  PubMed  Google Scholar 

  • Meinhardt F, Schaffrath R, Larsen M (1997) Microbial linear plasmids. Appl Microbiol Biotechnol 47:329–336

    CAS  PubMed  Google Scholar 

  • Merlin C, Springael D, Toussaint A (1999) Tn4371: a modular structure encoding a phage-like integrase, a Pseudomonas-like catabolic pathway, and RP4/Ti-like transfer functions. Plasmid 41:40–54

    CAS  PubMed  Google Scholar 

  • Monna L, Omori T, Kodama T (1993) Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans DBF63. Appl Environ Microbiol 59:285–289

    CAS  PubMed  Google Scholar 

  • Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS, Wild JR (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by Southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930

    Google Scholar 

  • Müller C, Lauf U, Hermann H (2001) The inverted repeats of IS1384, a newly described insertion sequence from Pseudomonas putida strain H, represent the specific target for integration of IS1383. Mol Genet Genomics 265:1004–1010

    Article  PubMed  Google Scholar 

  • Nagata Y, Miyauchi K, Takagi M (1999) Complete analysis of genes and enzymes for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Microbiol Biotechnol 23:380–390

    Article  CAS  PubMed  Google Scholar 

  • Nakatsu C, Ng J, Singh R, Straus N, Wyndham C (1991) Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences. Proc Natl Acad Sci USA 88:8312–8316

    CAS  PubMed  Google Scholar 

  • Negoro S, Okada H (1982) Physical map of Nylon oligomer degradative plasmid pOAD2 harbored in Flavobacterium sp. KI72. Agric Biol Chem 46:745–750

    CAS  Google Scholar 

  • Negoro S, Shinagawa H, Nakata A, Kinoshita S, Hatozaki T, Okada H (1980) Plasmid control of 6-aminohexanoic acid cyclic dimer degradation enzymes of Flavobacterium sp. KI72. J Bacteriol 143:238–245

    CAS  PubMed  Google Scholar 

  • Nelson KE, Weinel C, Paulsen CI, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  PubMed  Google Scholar 

  • Nishi A, Tominaga K, Furukawa K (2000) A 90-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715. J Bacteriol 182:1949–1955

    CAS  PubMed  Google Scholar 

  • Nojiri H, Sekiguchi H, Maeda K, Urata M, Nakai S, Yoshida T, Habe H, Omori T (2001) Genetic characterization and evolutionary implications of a car gene cluster in the carbazole degrader Pseudomonas sp. strain CA10. J Bacteriol 183:3663–3679

    Article  CAS  PubMed  Google Scholar 

  • Nojiri H, Kamakura M, Urata M, Tanaka T, Chung JS, Takemura T, Yoshida T, Habe H, Omori T (2002) Dioxin catabolic genes are dispersed on the Terrabacter sp. DBF63 genome. Biochem Biophys Res Commun 296:233–240

    Article  CAS  PubMed  Google Scholar 

  • Ogawa N, Miyashita K (1995) Recombination of a 3-chlorobenzoate catabolic plasmid from Alcaligenes eutrophus NH9 mediated by direct repeat elements. Appl Environ Microbiol 61:3788–3795

    CAS  PubMed  Google Scholar 

  • Ogawa N, Miyashita K (1999) The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Appl Environ Microbiol 65:724–731

    CAS  PubMed  Google Scholar 

  • Onruthai P, Habe H, Yoshida T, Nojiri H, Omori T (2003) Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem Biophys Res Commun 301:350–357

    Article  PubMed  Google Scholar 

  • Ouchiyama N, Miyachi S, Omori T (1998) Cloning and nucleotide sequence of carbazole catabolic genes from Pseudomonas stutzeri strain OM1, isolated from activated sludge. J Gen Appl Microbiol 44:57–63

    CAS  Google Scholar 

  • Park HS, Kim HS (2000) Identification and characterization of nitrobenzene catabolic plasmids pNB1 and pNB2 in Pseudomonas putida HS12. J Bacteriol 182:573–580

    Article  CAS  PubMed  Google Scholar 

  • Park W, Jeon CO, Hohnstoch-Ashe AM, Winans SC, Zylstra GJ, Madsen EL (2003) Identification and characterization of the conjugal transfer region of the pCg1 plasmid from naphthalene-degrading Pseudomonas putida Cg1. Appl Environ Microbiol 69:3263–3271

    Article  CAS  PubMed  Google Scholar 

  • Peters M, Heinaru E, Talpsep E, Wand H, Stottmeister U, Heinaru A, Nurk A (1997) Acquisition of a deliberately introduced phenol degradation operon, pheBA, by different indigenous Pseudomonas species. Appl Environ Microbiol 63:4899–4906

    CAS  PubMed  Google Scholar 

  • Poelarends GJ, Kulakov LA, Larkin MJ, Hylckama Vlieg JET van, Janssen DB (2000a) Role of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene- and 1,2-dibromoethane-degradative pathways. J Bacteriol 182:2191–2199

    CAS  PubMed  Google Scholar 

  • Poelarends GJ, Zandstra M, Bosma T, Kulakov LA, Larkin MJ, Marchesi JR, Weightman AJ, Janssen DB (2000b) Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism. J Bacteriol 182:2725–2731

    CAS  PubMed  Google Scholar 

  • Poh RPC, Smith ARW, Bruce IJ (2002) Complete characterization of Tn5530 from Burkholderia cepacia strain 2a (pIJB1) and studies of 2,4-dichlorophenoxyacetate uptake by the organism. Plasmid 48:1–12

    Article  CAS  PubMed  Google Scholar 

  • Providenti MA, Wyndham RC (2001) Identification and functional characterization of CbaR, a MarR-Like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway. Appl Environ Microbiol 67:3530–3541

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Gonzáles MI, Ramos-Díaz MA, Ramos JL (1994) Chromosomal gene capture mediated by the Pseudomonas putida TOL catabolic plasmid. J Bacteriol 176:4635–4641

    PubMed  Google Scholar 

  • Ravatn R, Studer S, Springael D, Zehnder AJB, Meer JR van der (1998a) Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida F1 of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. strain B13. J Bacteriol 180:4360–4369

    CAS  PubMed  Google Scholar 

  • Ravatn R, Studer S, Zehnder AJB, Meer JR van der (1998b) Int-B13, an unusual site-specific recombinase of the bacteriophage P4 integrase family, is responsible for chromosomal insertion of the 105-kilobase clc element of Pseudomonas sp. strain B13. J Bacteriol 180:5505–5514

    CAS  PubMed  Google Scholar 

  • Ravatn R, Zehnder AJB, Meer JR van der (1998c) Low-frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida F1 and to indigenous bacteria in laboratory-scale activated-sludge microcosm. Appl Environ Microbiol 64:2126–2132

    CAS  PubMed  Google Scholar 

  • Reddy BR, Shaw LE, Sayers JR, Williams PA (1994) Two identical copies of IS1246, a 1275 base pair sequence related to other bacterial insertion sequences, enclose the xyl genes on TOL plasmid pWW0. Microbiology 140:2305–2307

    CAS  PubMed  Google Scholar 

  • Rheinwald JG, Chakrabarty AM, Gunsalus IC (1973) A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc Natl Acad Sci USA 70:885–889

    CAS  PubMed  Google Scholar 

  • Riddle RR, Gibbs PR, Willson RC, Benedik MJ (2003) Purification and properties of 2-hydroxy-6-oxo-6-(2’-aminophenyl)hexa-2,4-dienoic acid hydrolase involved in microbial degradation of carbazole. Protein Expr Purif 28:182–189

    Article  CAS  PubMed  Google Scholar 

  • Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602

    CAS  PubMed  Google Scholar 

  • Ronchel MC, Ramos-Díaz MA, Ramos JL (2000) Retrotransfer of DNA in the rhizosphere. Environ Microbiol 2:319–323

    CAS  PubMed  Google Scholar 

  • Saeki H, Akira M, Furuhashi K, Averhoff B, Gottschalk G (1999) Degradation of trichloroethene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Norcardia corallina) B-276. Microbiology 145:1721–1730

    CAS  PubMed  Google Scholar 

  • Saint CP, McClure NC, Venables WA (1990) Physical map of the aromatic amine and m-toluate catabolic plasmid pTDN1 in Pseudomonas putida: location of a unique meta-cleavage pathway. J Gen Microbiol 136:615–625

    CAS  PubMed  Google Scholar 

  • Sato S, Nam JW, Kasuga K, Nojiri H, Yamane H, Omori T (1997a) Identification and characterization of genes encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CA10. J Bacteriol 179:4850–4858

    CAS  PubMed  Google Scholar 

  • Sato S, Ouchiyama N, Kimura T, Nojiri H, Yamane H, Omori T (1997b) Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA10: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase. J Bacteriol 179:4841–4849

    CAS  PubMed  Google Scholar 

  • Sentchilo VS, Perebituk AN, Zehnder AJB, Meer JR van der (2000) Molecular diversity of plasmids bearing genes that encode toluene and xylene metabolism in Pseudomonas strains isolated from different contaminated site in Belarus. Appl Environ Microbiol 66:2842–2852

    CAS  PubMed  Google Scholar 

  • Serdar CM, Gibson DT (1989) Isolation and characterization of altered plasmids in mutant strains of Pseudomonas putida NCIB 9816. Biochem Biophys Res Commun 164:764–771

    CAS  PubMed  Google Scholar 

  • Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44:246–249

    CAS  Google Scholar 

  • Shaw LE, Williams PA (1988) Physical and functional mapping of two cointegrate plasmids derived from RP4 and TOL plasmid pDK1. J Gen Microbiol 134:2463–2474

    CAS  PubMed  Google Scholar 

  • Shimizu S, Kobayashi H, Masai E, Fukuda M (2001) Characterization of the 450-kb linear plasmid in a polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl Environ Microbiol 67:2021–2028

    Article  CAS  PubMed  Google Scholar 

  • Shingler V, Franklin FCH, Tsuda M, Holroyd D, Bagdasarian M (1989) Molecular analysis of a plasmid-encoded phenol hydroxylase of Pseudomonas CF600. J Gen Microbiol 135:1083–1092

    CAS  PubMed  Google Scholar 

  • Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen WC, Cruden DL, Gibson DT, Zylstra GJ (1993) Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127:31–37

    CAS  PubMed  Google Scholar 

  • Sota M, Endo M, Nitta K, Kawasaki H, Tsuda M (2002) Characterization of a class II defective transposon carrying two haloacetate dehydrogenase genes from Delftia acidovorans plasmid pUO1. Appl Environ Microbiol 68:2307–2315

    Article  CAS  PubMed  Google Scholar 

  • Sota M, Kawasaki H, Tsuda M (2003) Structure of haloacetate-catabolic IncP-1β plasmid pUO1 and genetic mobility of its residing haloacetate-catabolic transposon. J Bacteriol 185:6741–6745

    Google Scholar 

  • Souza ML de, Wackett LP, Sadowsky MJ (1998) The atzABC genes encoding atrazine catabolism are located on a self-transmissible plasmid in Pseudomonas sp. strain ADP. Appl Environ Microbiol 64:2323–2326

    PubMed  Google Scholar 

  • Springael D, Kreps S, Mergeay M (1993) Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5. J Bacteriol 175:1674–1681

    CAS  PubMed  Google Scholar 

  • Springael D, Ryngaert A, Merlin C, Toussaint A, Mergeay M (2001) Occurrence of Tn4371-related mobile elements and sequences in (chloro)biphenyl-degrading bacteria. J Bacteriol 67:42–50

    Article  CAS  Google Scholar 

  • Stalker DM, McBride KE (1987) Cloning and expression in Escherichia coli of Klebsiella ozaenae plasmid-borne gene encoding a nitrilase specific for the herbicide bromoxynil. J Bacteriol 169:955–960

    CAS  PubMed  Google Scholar 

  • Stecker C, Johann A, Herzberg C, Averhoff B, Gottschalk G (2003) Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J Bacteriol 185:5269–5274

    Article  CAS  PubMed  Google Scholar 

  • Stillwell LC, Thurston SJ, Schneider RP, Romine MF, Fredrickson JK, Saffer JD (1995) Physical mapping and characterization of a catabolic plasmid from the deep-subsurface bacterium Sphingomonas sp. strain F199. J Bacteriol 177:4537–4539

    CAS  PubMed  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GKS, Wu Z, Paulsen IT, Reizer J, Sailer MH, Hancock REW, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    PubMed  Google Scholar 

  • Stuart-Keil KG, Hohnstock AM, Drees KP, Herrick JB, Madsen EL (1998) Plasmids responsible for horizontal transfer of naphthalene catabolism genes between bacteria at a coal tar-contaminated site are homologous to pDTG1 from Pseudomonas putida NCIB 9816-4. Appl Environ Microbiol 64:3633–3640

    CAS  PubMed  Google Scholar 

  • Szpirer C, Top E, Couturier M, Mergeay M (1999) Retrotransfer or gene capture: a feature of conjugative plasmids, with ecological and evolutional significance. Microbiology 145:3321–3329

    CAS  PubMed  Google Scholar 

  • Takagi T, Nojiri H, Yoshida T, Habe H, Omori T (2002) Detailed comparison between the substrate specificities of two angular dioxygenases, dibenzofuran 4,4a-dioxygenase from Terrabacter sp. and carbazole 1,9a-dioxygenase from Pseudomonas resinovorans. Biotechnol Lett 24:2099–2106

    Article  CAS  Google Scholar 

  • Tan HM (1999) Bacterial catabolic transposons. Appl Microbiol Biotechnol 51:1–12

    Article  CAS  PubMed  Google Scholar 

  • Tan HM, Fong KPY (1993) Molecular analysis of the plasmid-borne bed gene cluster from Pseudomonas putida ML2 and cloning of the cis-benzene dihydrodiol dehydrogenase gene. Can J Microbiol 39:357–362

    CAS  PubMed  Google Scholar 

  • Tan HM, Mason JR (1990) Cloning and expression of the plasmid-encoded benzene dioxygenase genes from Pseudomonas putida ML2. FEMS Microbiol Lett 72:259–264

    CAS  Google Scholar 

  • Thacker R, Rørvig O, Kahlon P, Gunsalus IC (1978) NIC, a conjugative nicotine-nicotinate degradative plasmid in Pseudomonas convexa. J Bacteriol 135:289–290

    CAS  PubMed  Google Scholar 

  • Thomas AW, Slater JH, Weightman AJ (1992) The dehalogenase gene dehI from Pseudomonas putida PP3 is carried on an unusual mobile genetic element designated DEH. J Bacteriol 174:1932–1940

    CAS  PubMed  Google Scholar 

  • Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269

    Article  CAS  PubMed  Google Scholar 

  • Top EM, Holben WE, Forney LJ (1995) Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl Environ Microbiol 61:1691–1698

    CAS  PubMed  Google Scholar 

  • Top EM, Moënne-Loccoz Y, Pembroke T, Thomas CM (2000) Phenotypic traits conferred by plasmids. In: Thomas CM (ed) The horizontal gene pool: bacterial plasmid and gene spread. Harwood, New York, pp 249–285

  • Top EM, Springael D, Boon N (2002) Catabolic mobile genetic elements and their potential use in bioremediation of polluted soils and waters. FEMS Microbiol Ecol 42:199–208

    Article  CAS  Google Scholar 

  • Toussaint A, Merlin C, Monchy S, Benotmane MA, Leplae R, Mergeay M, Springael D (2003) The biphenyl- and 4-chlorobiphenyl-catabolic transposon Tn4371, a member of a new family of genomic islands related to IncP and Ti plasmid. Appl Environ Microbiol 69:4837–4845

    Article  CAS  PubMed  Google Scholar 

  • Tralau T, Cook AM, Ruff J (2001) Map of the IncP1β plasmid pTSA encoding the widespread genes (tsa) for p-toluenesulfonate degradation in Comamonas teststeroni T-2. Appl Environ Microbiol 67:1508–1516

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M (1996) Catabolic transposons in pseudomonads. In: Nakazawa T, Furukawa K, Haas D, Silver S (eds) Molecular biology of pseudomonads. American Society for Microbiology, Washington, D.C., pp 219–228

  • Tsuda M, Genka H (2001) Identification and characterization of Tn4656, a novel class II transposon carrying a set of toluene-degrading genes from TOL plasmid pWW53. J Bacteriol 183:6215–6224

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Iino T (1987) Genetic analysis of a transposon carrying toluene degrading genes on a TOL plasmid pWW0. Mol Gen Genet 210:270–276

    CAS  PubMed  Google Scholar 

  • Tsuda M, Iino T (1988) Identification and characterization of Tn4653, a transposon covering the toluene transposon Tn4651 on TOL plasmid pWW0. Mol Gen Genet 213:72–77

    CAS  PubMed  Google Scholar 

  • Tsuda M, Iino T (1990) Naphthalene degrading genes on plasmid NAH7 are on a defective transposon. Mol Gen Genet 223:33–39

    CAS  PubMed  Google Scholar 

  • Tsuda M, Ninegishi K, Iino T (1989) Toluene transposons Tn4651 and Tn4653 are class II transposons. J Bacteriol 171:1386–1393

    CAS  PubMed  Google Scholar 

  • Tsuda M, Tan HM, Nishi A, Furukawa K (1999) Mobile catabolic genes in bacteria. J. Biosci Bioeng 87:401–410

    Article  CAS  Google Scholar 

  • Uz I, Duan YP, Ogram A (2000) Characterization of the naphthalene-degrading bacterium, Rhodococcus opacus M213. FEMS Microbiol Lett 185:231–238

    CAS  PubMed  Google Scholar 

  • Vallaeys T, Courde L, McGowan C, Wright AD, Fulthorpe RR (1999) Phylogenetic analyses indicate independent recruitment of diverse gene cassettes during assemblage of the 2,4-D catabolic pathway. FEMS Microbiol Ecol 28:373–382

    Google Scholar 

  • Vedler E, Kõiv V, Heinaru A (2000) Analysis of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pEST4011 of Achromobacter xylosoxidans subsp. denitrificans strain EST4002. Gene 225:281–288

    Article  Google Scholar 

  • Weightman AJ, Topping AW, Hill KE, Lee LL, Sakai K, Slater JH, Thomas AW (2002) Transposition of DEH, a broad-host-range transposon flanked by ISPpu12, in Pseudomonas putida is associated with genomic rearrangements and dehalogenase gene silencing. J Bacteriol 184:6581–6591

    Article  CAS  PubMed  Google Scholar 

  • Weinel C, Nelson KE, Tümmler B (2002) Global features of the Pseudomonas putida KT2440 genome sequence. Environ Microbiol 4:809–818

    Article  CAS  PubMed  Google Scholar 

  • Widada J (2000) Identification and monitoring of aromatic hydrocarbon-degrading bacteria and their catabolic genes for use in bioremediation. PhD thesis, The University of Tokyo, Japan

  • Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423

    CAS  PubMed  Google Scholar 

  • Williams PA, Jones RM, Shaw LE (2002) A third transposable element, ISPpu12, from the toluene-xylene catabolic plasmid pWW0 of Pseudomonas putida mt-2. J Bacteriol 184:6572–6580

    Article  CAS  PubMed  Google Scholar 

  • Winstanley C, Taylor SC, Williams PA (1987) pWW174: a large plasmid from Acinetobacter calcoaceticus encoding benzene catabolism by the β-ketoadipate pathway. Mol Microbiol 1:219–227

    CAS  PubMed  Google Scholar 

  • Wyndham RC, Singh RK, Straus NA (1988) Catabolic instability, plasmid gene deletion and recombination in Alcaligenes sp. BR60. Arch Microbiol 150:237–243

    CAS  PubMed  Google Scholar 

  • Xia XS, Aathithan S, Oswiecimska K, Smith ARW, Bruce IJ (2001) A novel plasmid pIJB1 possessing a putative 2,4-dichlorophenoxyacetate degradative transposon Tn5530 in Burkholderia cepacia strain 2a. Plasmid 39:154–159

    Article  Google Scholar 

  • Yano K, Nishi T (1980) pKJ1, a naturally occurring conjugative plasmid coding for toluene degradation and resistance to streptomycin and sulfonamides. J Bacteriol 143:552–560

    CAS  PubMed  Google Scholar 

  • Yen KM, Serdar CM (1988) Genetics of naphthalene catabolism in pseudomonads. Crit Rev Microbiol 15:247–268

    CAS  PubMed  Google Scholar 

  • Yeo CC, Yiin S, Tan BH, Poh CL (2001) Isolation and characterization of group II introns from Pseudomonas alcaligenes and Pseudomonas putida. Plasmid 45:233–239

    Article  CAS  PubMed  Google Scholar 

  • Zylstra GJ, Kim E (1997) Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 19:408–414

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. Tsuda and Mr. M. Sota of Tohoku University for helpful suggestions. Part of this work was supported by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nojiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nojiri, H., Shintani, M. & Omori, T. Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl Microbiol Biotechnol 64, 154–174 (2004). https://doi.org/10.1007/s00253-003-1509-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1509-y

Keywords

Navigation