Skip to main content

Organic Cation Transporter Expression and Function in the CNS

  • Chapter
  • First Online:
Organic Cation Transporters in the Central Nervous System

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 266))

Abstract

The blood–brain barrier (BBB) and blood–cerebrospinal fluid barrier (BCSFB) represent major control checkpoints protecting the CNS, by exerting selective control over the movement of organic cations and anions into and out of the CNS compartment. In addition, multiple CNS cell types, e.g., astrocytes, ependymal cells, microglia, contribute to processes that maintain the status quo of the CNS milieu. To fulfill their roles, these barriers and cell types express a multitude of transporter proteins from dozens of different transporter families. Fundamental advances over the past few decades in our knowledge of transporter substrates, expression profiles, and consequences of loss of function are beginning to change basic theories regarding the contribution of various cell types and clearance networks to coordinated neuronal signaling, complex organismal behaviors, and overall CNS homeostasis. In particular, transporters belonging to the Solute Carrier (SLC) superfamily are emerging as major contributors, including the SLC22 organic cation/anion/zwitterion family of transporters (includes OCT1–3 and OCTN1–3), the SLC29 facilitative nucleoside family of transporters (includes PMAT), and the SLC47 multidrug and toxin extrusion family of transporters (includes MATE1–2). These transporters are known to interact with neurotransmitters, antidepressant and anxiolytic agents, and drugs of abuse. Clarifying their contributions to the underlying mechanisms regulating CNS permeation and clearance, as well as the health status of astrocyte, microglial and neuronal cell populations, will drive new levels of understanding as to maintenance of the CNS milieu and approaches to new therapeutics and therapeutic strategies in the treatment of CNS disorders. This chapter highlights organic cation transporters belonging to the SLC superfamily known to be expressed in the CNS, providing an overview of their identification, mechanism of action, CNS expression profile, interaction with neurotransmitters and antidepressant/antipsychotic drugs, and results from behavioral studies conducted in loss of function models (knockout/knockdown).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this chapter the convention of using all capital letters to designate human transporters and first initial capital followed by lowercase letters to designate non-human transporters is used. Species is indicated by a lowercase letter preceding the transporter name; h = human, r = rat, m = mouse, rb = rabbit.

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas H. Sweet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sweet, D.H. (2021). Organic Cation Transporter Expression and Function in the CNS. In: Daws, L.C. (eds) Organic Cation Transporters in the Central Nervous System. Handbook of Experimental Pharmacology, vol 266. Springer, Cham. https://doi.org/10.1007/164_2021_463

Download citation

Publish with us

Policies and ethics