Skip to main content

Advertisement

Log in

Carnitine/Organic Cation Transporter OCTN1 Negatively Regulates Activation in Murine Cultured Microglial Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Brain immune cells, i.e., microglia, play an important role in the maintenance of brain homeostasis, whereas chronic overactivation of microglia is involved in the development of various neurodegenerative disorders. Therefore, the regulation of microglial activation may contribute to their treatment. The aim of the present study was to clarify the functional expression of carnitine/organic cation transporter OCTN1/SLC22A4, which recognizes the naturally occurring food-derived antioxidant ergothioneine (ERGO) as a substrate in vivo, in microglia and its role in regulation of microglial activation. Primary cultured microglia derived from wild-type mice (WT-microglia) and mouse microglial cell line BV2 exhibited time-dependent uptake of [3H]- or d9-labeled ERGO. The uptake was markedly decreased in cultured microglia from octn1 gene knockout mice (octn1 −/−-microglia) and BV2 cells transfected with small interfering RNA targeting the mouse octn1 gene (siOCTN1). These results demonstrate that OCTN1 is functionally expressed in murine microglial cells. Exposure of WT-microglia to ERGO led to a significant decrease in cellular hypertrophy by LPS-stimulation with concomitant attenuation of intracellular reactive oxygen species (ROS), suggesting that OCTN1-mediated ERGO uptake may suppress cellular hypertrophy via the inhibition of ROS production with microglial activation. The expression of mRNA for interleukin-1β (IL-1β) after LPS-treatment was significantly increased in octn1 −/−-microglia and siOCTN1-treated BV2 cells compared to the control cells. Meanwhile, treatment of ERGO minimally affected the induction of IL-1β mRNA by LPS-stimulation in cultured microglia and BV2 cells. Thus, OCTN1 negatively regulated the induction of inflammatory cytokine IL-1β, at least in part, via the transport of unidentified substrates other than ERGO in microglial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s modified Eagle’s medium

ERGO:

Ergothioneine

FBS:

Fetal bovine serum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

IL-1β:

Interleukin-1β

LC-MS/MS:

Liquid chromatography-mass spectrometry/mass spectrometry

LPS:

Lipopolysaccharide

MRM:

Multiple reaction monitoring

OCTN1:

Carnitine/organic cation transporter 1

octn1 −/− :

octn1 gene knockout

octn1 −/−-microglia:

Microglia derived from octn1 −/− mice

PBS:

Phosphate-buffered saline

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcription polymerase chain reaction

SLC:

Solute carrier

siRNA:

Small interfering RNA

siOCTN1:

SiRNA targeting the mouse octn1gene

TNFα:

Tumor necrosis factor-α

WT-microglia:

Microglia derived from wild-type mice

References

  1. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  2. Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339:156–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  CAS  PubMed  Google Scholar 

  4. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  5. Wake H, Moorhouse AJ, Miyamoto A, Nabekura J (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36:209–217

    Article  CAS  PubMed  Google Scholar 

  6. Pan J, Jin JL, Ge HM, Yin KL, Chen X, Han LJ, Chen Y, Qian L, Li XX, Xu Y (2015) Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARγ-dependent manner. J Neuroinflamm 12:51

    Article  CAS  Google Scholar 

  7. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    Article  CAS  PubMed  Google Scholar 

  8. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49:489–502

    Article  CAS  PubMed  Google Scholar 

  9. Nasu-Tada K, Koizumi S, Inoue K (2005) Involvement of beta1 integrin in microglial chemotaxis and proliferation on fibronectin: different regulations by ADP through PKA. Glia 52:98–107

    Article  PubMed  Google Scholar 

  10. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2 × 4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    Article  CAS  PubMed  Google Scholar 

  11. Polito A, Brouland JP, Porcher R, Sonneville R, Siami S, Stevens RD, Guidoux C, Maxime V, de la Grandmaison GL, Chrétien FC, Gray F, Annane D, Sharshar T (2011) Hyperglycaemia and apoptosis of microglial cells in human septic shock. Crit Care 15:R131

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nakajima K, Kanamatsu T, Koshimoto M, Kohsaka S (2017) Microglia derived from the axotomized adult rat facial nucleus uptake glutamate and metabolize it to glutamine in vitro. Neurochem Int 102:1–12

    Article  CAS  PubMed  Google Scholar 

  13. Gibson CJ, Hossain MM, Richardson JR, Aleksunes LM (2012) Inflammatory regulation of ATP binding cassette efflux transporter expression and function in microglia. J Pharmacol Exp Ther 343:650–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yabuuchi H, Tamai I, Nezu J, Sakamoto K, Oku A, Shimane M, Sai Y, Tsuji A (1999) Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther 289:768–773

    CAS  PubMed  Google Scholar 

  15. Kato Y, Kubo Y, Iwata D, Kato S, Sudo T, Sugiura T, Kagaya T, Wakayama T, Hirayama A, Sugimoto M, Sugihara K, Kaneko S, Soga T, Asano M, Tomita M, Matsui T, Wada M, Tsuji A (2010) Gene knockout and metabolome analysis of carnitine/organic cation transporter OCTN1. Pharm Res 27:832–840

    Article  CAS  PubMed  Google Scholar 

  16. Nakamichi N, Taguchi T, Hosotani H, Wakayama T, Shimizu T, Sugiura T, Iseki S, Kato Y (2012) Functional expression of carnitine/organic cation transporter OCTN1 in mouse brain neurons: possible involvement in neuronal differentiation. Neurochem Int 61:1121–1132

    Article  CAS  PubMed  Google Scholar 

  17. Ishimoto T, Nakamichi N, Hosotani H, Masuo Y, Sugiura T, Kato Y (2014) Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons. PLoS ONE 9:e89434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cheah IK, Halliwell B (2012) Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim Biophys Acta 822:784–793

    Article  CAS  Google Scholar 

  19. Shimizu T, Masuo Y, Takahashi S, Nakamichi N, Kato Y (2015) Organic cation transporter Octn1-mediated uptake of food-derived antioxidant ergothioneine into infiltrating macrophages during intestinal inflammation in mice. Drug Metab Pharmacokinet 30:231–239

    Article  CAS  PubMed  Google Scholar 

  20. Maeda T, Hirayama M, Kobayashi D, Miyazawa K, Tamai I (2007) Mechanism of the regulation of organic cation/carnitine transporter 1 (SLC22A4) by rheumatoid arthritis-associated transcriptional factor RUNX1 and inflammatory cytokines. Drug Metab Dispos 35:394–401

    Article  CAS  PubMed  Google Scholar 

  21. Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27:229–237

    Article  CAS  PubMed  Google Scholar 

  22. Nakazato R, Takarada T, Watanabe T, Nguyen BT, Ikeno S, Hinoi E, Yoneda Y (2014) Constitutive and functional expression of runt-related transcription factor-2 by microglial cells. Neurochem Int 74:24–35

    Article  CAS  PubMed  Google Scholar 

  23. Saura J, Tusell JM, Serratosa J (2003) High-yield isolation of murine microglia by mild trypsinization. Glia 44:183–189

    Article  PubMed  Google Scholar 

  24. Nakazato R, Takarada T, Yamamoto T, Hotta S, Hinoi E, Yoneda Y (2011) Selective upregulation of Per1 mRNA expression by ATP through activation of P2 × 7 purinergic receptors expressed in microglial cells. J Pharmacol Sci 116:350–361

    Article  CAS  PubMed  Google Scholar 

  25. Yoneyama M, Kawada K, Gotoh Y, Shiba T, Ogita K (2010) Endogenous reactive oxygen species are essential for proliferation of neural stem/progenitor cells. Neurochem Int 56:740–746

    Article  CAS  PubMed  Google Scholar 

  26. Wu SY, Chen YW, Tsai SF, Wu SN, Shih YH, Jiang-Shieh YF, Yang TT, Kuo YM (2016) Estrogen ameliorates microglial activation by inhibiting the Kir2.1 inward-rectifier K(+) channel. Sci Rep 6:22864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gentleman SM, Leclercq PD, Moyes L, Graham DI, Smith C, Griffin WS, Nicoll JA (2004) Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci Int 146:97–104

    Article  CAS  PubMed  Google Scholar 

  28. Saijo K, Crotti A, Glass CK (2013) Regulation of microglia activation and deactivation by nuclear receptors. Glia 61:104–111

    Article  PubMed  Google Scholar 

  29. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477

    Article  CAS  Google Scholar 

  30. Van Eldik LJ, Carrillo MC, Cole PE, Feuerbach D, Greenberg BD, Hendrix JA, Kennedy M, Kozauer N, Margolin RA, Molinuevo JL, Mueller R, Ransohoff RM, Wilcock DM, Bain L, Bales K (2016) The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimer’s Dement 2:99–109

    Article  Google Scholar 

  31. Chao Y, Wong SC, Tan EK (2014) Evidence of inflammatory system involvement in Parkinson’s disease. Biomed Res Int 2014:308654

    PubMed  PubMed Central  Google Scholar 

  32. Qin L, Liu Y, Hong JS, Crews FT (2013) NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 61:855–868

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yuan Y, Zha H, Rangarajan P, Ling EA, Wu C (2014) Anti-inflammatory effects of Edaravone and Scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia. BMC Neurosci 15:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bachstetter AD, Van Eldik LJ, Schmitt FA, Neltner JH, Ighodaro ET, Webster SJ, Patel E, Abner EL, Kryscio RJ, Nelson PT (2015) Disease-related microglia heterogeneity in the hippocampus of Alzheimer’s disease, dementia with Lewy bodies, and hippocampal sclerosis of aging. Acta Neuropathol Commun 3:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  36. Gomez-Nicola D, Perry VH (2015) Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist 21:169–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fan R, Xu F, Previti ML, Davis J, Grande AM, Robinson JK, Van Nostrand WE (2007) Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. J Neurosci 27:3057–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoshizaki T, Schenk S, Imamura T, Babendure JL, Sonoda N, Bae EJ, Oh DY, Lu M, Milne JC, Westphal C, Bandyopadhyay G, Olefsky JM (2010) SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab 298:E419–E428

    Article  CAS  PubMed  Google Scholar 

  39. Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO (2017) Melatonin stimulates the SIRT1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain. CNS Neurosci Ther 23:33–44

    Article  CAS  PubMed  Google Scholar 

  40. D’Onofrio N, Servillo L, Giovane A, Casale R, Vitiello M, Marfella R, Paolisso G, Balestrieri ML (2016) Ergothioneine oxidation in the protection against high-glucose induced endothelial senescence: Involvement of SIRT1 and SIRT6. Free Radic Biol Med 96:211–222

    Article  PubMed  CAS  Google Scholar 

  41. von Bernhardi R, Eugenín-von Bernhardi L, Eugenín J (2015) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7:124

    Google Scholar 

  42. Ishihara Y, Takemoto T, Itoh K, Ishida A, Yamazaki T (2015) Dual role of superoxide dismutase 2 induced in activated microglia: oxidative stress tolerance and convergence of inflammatory responses. Biol Chem 290:22805–22817

    Article  CAS  Google Scholar 

  43. Pochini L, Scalise M, Di Silvestre S, Belviso S, Pandolfi A, Arduini A, Bonomini M, Indiveri C (2016) Acetylcholine and acetylcarnitine transport in peritoneum: role of the SLC22A4 (OCTN1) transporter. Biochim Biophys Acta 1858:653–660

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Q, Lu Y, Bian H, Guo L, Zhu H (2017) Activation of the α7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2. Am J Transl Res 9:971–985

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim MH, Maeng HJ, Yu KH, Lee KR, Tsuruo T, Kim DD, Shim CK, Chung SJ (2010) Evidence of carrier-mediated transport in the penetration of donepezil into the rat brain. J Pharm Sci 99:1548–1566

    Article  CAS  PubMed  Google Scholar 

  46. Kawasaki Y, Kato Y, Sai Y, Tsuji A (2004) Functional characterization of human organic cation transporter OCTN1 single nucleotide polymorphisms in the Japanese population. J Pharm Sci 93:2920–2926

    Article  CAS  PubMed  Google Scholar 

  47. Urban TJ, Yang C, Lagpacan LL, Brown C, Castro RA, Taylor TR, Huang CC, Stryke D, Johns SJ, Kawamoto M, Carlson EJ, Ferrin TE, Burchard EG, Giacomini KM (2007) Functional effects of protein sequence polymorphisms in the organic cation/ergothioneine transporter OCTN1 (SLC22A4). Pharmacogenet Genomics 17:773–782

    Article  CAS  PubMed  Google Scholar 

  48. Urban TJ, Brown C, Castro RA, Shah N, Mercer R, Huang Y, Brett CM, Burchard EG, Giacomini KM (2008) Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther 83:416–421

    Article  CAS  PubMed  Google Scholar 

  49. Futatsugi A, Masuo Y, Kawabata S, Nakamichi N, Kato Y (2016) L503F variant of carnitine/organic cation transporter 1 efficiently transports metformin and other biguanides. J Pharm Pharmacol 68:1160–1169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grants-in-Aid for Scientific Research to NN (No. 16K08266) and YK (No. 15H04664) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noritaka Nakamichi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishimoto, T., Nakamichi, N., Nishijima, H. et al. Carnitine/Organic Cation Transporter OCTN1 Negatively Regulates Activation in Murine Cultured Microglial Cells. Neurochem Res 43, 116–128 (2018). https://doi.org/10.1007/s11064-017-2350-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2350-5

Keywords

Navigation