Skip to main content

Advertisement

Log in

Interaction of antidepressant and antipsychotic drugs with the human organic cation transporters hOCT1, hOCT2 and hOCT3

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Besides the three antidepressant-sensitive, Na+- and Cl-dependent monoamine transporters, Na+-independent organic cation transporters (OCTs) are known to transport monoamines. However, little is known about the interactions of psychotropic drugs with human (h) OCTs. In the present study, a series of diverse antidepressant and antipsychotic drugs were examined for their inhibitory potency at hOCT1, hOCT2 and hOCT3 by measuring inhibition of [3H]-MPP+ uptake into HEK293 cells stably expressing one of the three hOCTs. The inhibitory potencies (IC50s) ranged from 1 to 900 μM. Most of the examined drugs showed highest inhibitory potency at hOCT1 which is very sparsely expressed in the brain and mainly involved in renal and hepatic clearance of cationic drugs. At their upper therapeutic plasma concentrations, several drugs are expected to inhibit by more than 20 % hOCT1 and could thus interfere with the pharmacokinetics of hOCT1-transported drugs in the kidney and liver, namely trimipramine, desipramine and fluoxetine (by about 37 %), levomepromazine and nefazodone (by about 32 %), and clozapine and amitriptyline (by about 22 %). At hOCT2 and hOCT3, which are involved in monoamine homeostasis in the brain, IC50s of most psychoactive drugs were in the high micromolar range. At their upper plasma concentrations, only three compounds, bupropion, nefazodone and clozapine, showed potential for inhibition, of about 18 % at hOCT2 (bupropion), about 22 % at hOCT3 (nefazodone) and of approximately 10 % at hOCT2 and hOCT3 (clozapine). Thus, under the assumption of a tenfold accumulation in the brain, bupropion, nefazodone and clozapine may notably inhibit the corresponding hOCTs. It remains to be shown whether such a direct inhibition plays a role in the clinical effects of these three drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amphoux A, Vialou V, Drescher E, Brüss M, Mannoury La Cour C, Rochat C, Millan MJ, Giros B, Bönisch H, Gautron S (2006) Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology 50:941–952

    Article  PubMed  CAS  Google Scholar 

  • Bacq A, Balasse L, Biala G, Guiard B, Gardier AM, Schinkel A, Louis F, Vialou V, Martres MP, Chevarin C, Hamon M, Giros B, Gautron S (2011) Organic cation transporter 2 controls brain norepinephrine and serotonin clearance and antidepressant response. Mol Psychiatry. doi:10.1038/mp.2011.87

  • Baganz NL, Horton RE, Calderon AS, Owens WA, Munn JL, Watts LT, Koldzic-Zivanovic N, Jeske NA, Koek W, Toney GM, Daws LC (2008) Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proc Natl Acad Sci USA 105:18976–18981

    Article  PubMed  CAS  Google Scholar 

  • Baganz N, Horton R, Martin K, Holmes A, Daws LC (2010) Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: organic cation transporter 3, the smoking gun. J Neurosci 30:15185–15195

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Centorrono F, Flood JG, Volpicelli SA, Huston-Lyons D, Cohen BM (1993) Tissue concentrations of clozapine and its metabolites in the rat. Neuropsychopharmacology 9:117–124

    PubMed  CAS  Google Scholar 

  • Burckhardt G, Wolff NA (2000) Structure of renal organic anion and cation transporters. Am J Physiol Renal Physiol 278:F853–F866

    PubMed  CAS  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Daws LC (2009) Unfaithful neurotransmitter transporters: focus on serotonin uptake and implications for antidepressant efficacy. Pharmacol Ther 121:89–99

    Article  PubMed  CAS  Google Scholar 

  • Demotes-Mainard F, Galley P, Manciet G, Vinson G, Salvadori C (1991) Pharmacokinetics of the antidepressant tianeptine at steady state in the elderly. J Clin Pharmacol 31:174–178

    PubMed  CAS  Google Scholar 

  • Ejsing TB, Linnet K (2005) Influence of P-glycoprotein inhibition on the distribution of the tricyclic antidepressant nortriptyline over the blood–brain barrier. Hum Psychopharmacol 20:149–153

    Article  PubMed  CAS  Google Scholar 

  • Engel K, Zhou M, Wang J (2004) Identification and characterization of a novel monoamine transporter in the human brain. J Biol Chem 279:50042–50049

    Article  PubMed  CAS  Google Scholar 

  • Ghanbari R, El Mansari M, Blier P (2011) Enhancement of serotonergic and noradrenergic neurotransmission in the rat hippocampus by sustained administration of bupropion. Psychopharmacology (Berl) 217:61–73

    Article  CAS  Google Scholar 

  • Greene DS, Barbhaiya RH (1997) Clinical pharmacokinetics of nefazodone. Clin Pharmacokinet 33:260–275

    Article  PubMed  CAS  Google Scholar 

  • Haenisch B, Bönisch H (2010) Interaction of the human plasma membrane monoamine transporter (hPMAT) with antidepressants and antipsychotics. Naunyn Schmiedebergs Arch Pharmacol 381:33–39

    Article  PubMed  CAS  Google Scholar 

  • Haenisch B, Hiemke C, Bönisch H (2011) Inhibitory potencies of trimipramine and its main metabolites at human monoamine and organic cation transporters. Psychopharmacology (Berl) 217:289–295

    Article  CAS  Google Scholar 

  • Hayer-Zillgen M, Brüss M, Bönisch H (2002) Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol 136:829–836

    Article  PubMed  CAS  Google Scholar 

  • Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K, Fric M, Gerlach M, Greiner C, Gründer G, Haen E, Havemann-Reinecke U, Jaquenoud Sirot E, Kirchherr H, Laux G, Lutz UC, Messer T, Müller MJ, Pfuhlmann B, Rambeck B, Riederer P, Schoppek B, Stingl J, Uhr M, Ulrich S, Waschgler R, Zernig G (2011) AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry: Update 2011. Pharmacopsychiatry 44:195–235

    Article  Google Scholar 

  • Jonker JW, Schinkel AH (2004) Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther 308:2–9

    Article  PubMed  CAS  Google Scholar 

  • Koepsell H, Lips K, Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227–1251

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Wiltfang J, Riederer P, Bleich S (2006) Neuroleptic drugs in the human brain: clinical impact of persistence and region-specific distribution. Eur Arch Psychiatry Clin Neurosci 256:274–280

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Movin-Osswald G, Boelaert J, Hammarlund-Udenaes M, Nilsson LB (1993) The pharmacokinetics of remoxipride and metabolites in patients with various degrees of renal function. Br J Clin Pharmacol 35:615–622

    Article  PubMed  CAS  Google Scholar 

  • Nies AT, Koepsell H, Damme K, Schwab M (2011) Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol 201:105–167

    Article  PubMed  CAS  Google Scholar 

  • Suckow RF, Smith TM, Perumal AS, Cooper TB (1986) Pharmacokinetics of bupropion and metabolites in plasma and brain of rats, mice, and guinea pigs. Drug Metab Dispos 14:692–697

    PubMed  CAS  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340:249–258

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi M, Jansen K, Blakely RD, Richelson E (1999) Pharmacological profile of neuroleptics at human monoamine transporters. Eur J Pharmacol 368:277–283

    Article  PubMed  CAS  Google Scholar 

  • Vialou V, Balasse L, Callebert J, Launay JM, Giros B, Gautron S (2008) Altered aminergic neurotransmission in the brain of organic cation transporter 3-deficient mice. J Neurochem 106:1471–1482

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. C. Hiemke for useful suggestions and Natalie Lobes for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Bönisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haenisch, B., Drescher, E., Thiemer, L. et al. Interaction of antidepressant and antipsychotic drugs with the human organic cation transporters hOCT1, hOCT2 and hOCT3. Naunyn-Schmiedeberg's Arch Pharmacol 385, 1017–1023 (2012). https://doi.org/10.1007/s00210-012-0781-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-012-0781-8

Keywords

Navigation