Skip to main content

Advertisement

Log in

Gene Knockout and Metabolome Analysis of Carnitine/Organic Cation Transporter OCTN1

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Solute carrier OCTN1 (SLC22A4) is an orphan transporter, the physiologically important substrate of which is still unidentified. The aim of the present study was to examine physiological roles of OCTN1.

Methods

We first constructed octn1 gene knockout (octn1 −/−) mice. Metabolome analysis was then performed to identify substrates in vivo. The possible association of the substrate identified with diseased conditions was further examined.

Results

The metabolome analysis of blood and several organs indicated complete deficiency of a naturally occurring potent antioxidant ergothioneine in octn1 −/− mice among 112 metabolites examined. Pharmacokinetic analyses after oral administration revealed the highest distribution to small intestines and extensive renal reabsorption of [3H]ergothioneine, both of which were much reduced in octn1 −/− mice. The octn1 −/− mice exhibited greater susceptibility to intestinal inflammation under the ischemia and reperfusion model. The blood ergothioneine concentration was also much reduced in Japanese patients with Crohn’s disease, compared with healthy volunteers and patients with another inflammatory bowel disease, ulcerative colitis.

Conclusions

These results indicate that OCTN1 plays a pivotal role for maintenance of systemic and intestinal exposure of ergothioneine, which could be important for protective effects against intestinal tissue injuries, providing a possible diagnostic tool to distinguish the inflammatory bowel diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CD:

Crohn’s disease

CE-TOFMS:

capillary electrophoresis time-of-flight mass spectrometry

OCTN:

Organic carnitine/organic cation transporter

UC:

ulcerative colitis

REFERENCES

  1. Tamai I, Yabuuchi H, Nezu J, Sai Y, Oku A, Shimane M, et al. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 1997;419:107–11.

    Article  CAS  PubMed  Google Scholar 

  2. Yabuuchi H, Tamai I, Nezu J, Sakamoto K, Oku A, Shimane M, et al. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999;289:768–73.

    CAS  PubMed  Google Scholar 

  3. Gründemann D, Harlfinger S, Golz S, Geerts A, Lazar A, Berkels R, et al. Discovery of the ergothioneine transporter. Proc Natl Acad Sci USA. 2005;102:5256–61.

    Article  PubMed  Google Scholar 

  4. Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, et al. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem. 1998;273:20378–82.

    Article  CAS  PubMed  Google Scholar 

  5. Wu X, Prasad PD, Leibach FH, Ganapathy V. cDNA sequence, transport function and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem Biophys Res Commun. 1998;246:589–95.

    Article  CAS  PubMed  Google Scholar 

  6. Nezu J, Tamai I, Oku A, Ohashi R, Yabuuchi H, Hashimoto N, et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet. 1999;21:91–4.

    Article  CAS  PubMed  Google Scholar 

  7. Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet. 2003;35:341–8.

    Article  CAS  PubMed  Google Scholar 

  8. Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q, Gu X, et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet. 2004;36:471–5.

    Article  CAS  PubMed  Google Scholar 

  9. Yamazaki K, Takazoe M, Tanaka T, Ichimori T, Saito S, Iida A, et al. Association analysis of SLC22A4, SLC22A5 and DLG5 in Japanese patients with Crohn disease. J Hum Genet. 2004;49:664–8.

    Article  CAS  PubMed  Google Scholar 

  10. Fisher SA, Hampe J, Onnie CM, Daly MJ, Curley C, Purcell S, et al. Direct or indirect association in a complex disease: the role of SLC22A4 and SLC22A5 functional variants in Crohn disease. Hum Mutat. 2006;27:778–85.

    Article  CAS  PubMed  Google Scholar 

  11. Shekhawat PS, Srinivas SR, Matern D, Bennett MJ, Boriack R, George V, et al. Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine-deficient jvs (OCTN2(−/−)) mice. Mol Genet Metab. 2007;92:315–24.

    Article  CAS  PubMed  Google Scholar 

  12. Asano M, Furukawa K, Kido M, Matsumoto S, Umesaki Y, Kochibe N, et al. Growth retardation and early death of beta-1, 4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J. 1997;16:1850–7.

    Article  CAS  PubMed  Google Scholar 

  13. Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteoporosis in mice. Cell. 1991;64:693–702.

    Article  CAS  PubMed  Google Scholar 

  14. Yagi T, Nada S, Watanabe N, Tamemoto H, Kohmura N, Ikawa Y, et al. A novel negative selection for homologous recombination using diphtheria toxin A fragment gene. Anal Biochem. 1993;214:77–86.

    Article  CAS  PubMed  Google Scholar 

  15. Tamai I, Ohashi R, Nezu JI, Sai Y, Kobayashi D, Oku A, et al. Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem. 2000;275:40064–72.

    Article  CAS  PubMed  Google Scholar 

  16. Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T, et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem. 2006;281:16768–76.

    Article  CAS  PubMed  Google Scholar 

  17. Soga T, Ishikawa T, Igarashi S, Sugawara K, Kakazu Y, Tomita M. Analysis of nucleotides by pressure-assisted capillary electrophoresis mass spectrometry using silanol mask technique. J Chromatogr A. 2007;1159:125–33.

    Article  CAS  PubMed  Google Scholar 

  18. Malathi P, Preiser H, Fairclough P, Mallett P, Crane RK. A rapid method for the isolation of kidney brush border membranes. Biochim Biophys Acta. 1979;554:259–63.

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura T, Yoshida K, Yabuuchi H, Maeda T, Tamai I. Functional characterization of ergothioneine transport by rat organic cation/carnitine transporter Octn1 (slc22a4). Biol Pharm Bull. 2008;31:1580–4.

    Article  CAS  PubMed  Google Scholar 

  20. Brummel MC. In search of a physiological function for L-ergothioneine-II. Med Hypotheses. 1989;30:39–48.

    Article  CAS  PubMed  Google Scholar 

  21. Fahey RC. Novel thiols of prokaryotes. Annu Rev Microbiol. 2001;55:333–56.

    Article  CAS  PubMed  Google Scholar 

  22. Tamai I, Nakanishi T, Kobayashi D, China K, Kosugi Y, Nezu J, et al. Involvement of OCTN1 (SLC22A4) in pH-dependent transport of organic cations. Mol Pharm. 2004;1:57–66.

    Article  CAS  PubMed  Google Scholar 

  23. Chaudière J, Ferrari-Iliou R. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol. 1999;37:949–62.

    Article  PubMed  Google Scholar 

  24. Sakrak O, Kerem M, Bedirli A, Pasaoglu H, Akyurek N, Ofluoglu E, et al. Ergothioneine modulates proinflammatory cytokines and heat shock protein 70 in mesenteric ischemia and reperfusion injury. J Surg Res. 2008;144:36–42.

    Article  CAS  PubMed  Google Scholar 

  25. Nikolaus S, Schreiber S. Diagnostics of inflammatory bowel disease. Gastroenterology. 2007;133:1670–89.

    Article  PubMed  Google Scholar 

  26. Kobayashi D, Aizawa S, Maeda T, Tsuboi I, Yabuuchi H, Nezu J, et al. Expression of organic cation transporter OCTN1 in hematopoietic cells during erythroid differentiation. Exp Hematol. 2004;32:1156–62.

    Article  CAS  PubMed  Google Scholar 

  27. Wijnholds J, Evers R, van Leusden MR, Mol CA, Zaman GJ, Mayer U, et al. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat Med. 1997;11:1275–9.

    Article  Google Scholar 

  28. Jonker JW, Wagenaar E, Van Eijl S, Schinkel AH. Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol. 2003;21:7902–8.

    Article  Google Scholar 

  29. Kawano H, Otani M, Takeyama K, Kawai Y, Mayumi T, Hama T. Studies on ergothioneine. VI. Distribution and fluctuations of ergothioneine in rats. Chem Pharm Bull. 1982;30:1760–5.

    CAS  PubMed  Google Scholar 

  30. Melville DB, Horner WH, Otken CC, Ludwig ML. Studies of the origin of L-Ergo in animals. J Biol Chem. 1955;213:61–8.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We thank Lica Ishida, Kazuhiro Suzuki and Ryutaro Matsuhashi for technical assistance in Kanazawa University. We also thank Maki Sugawara and Naoko Toki for technical assistance in Keio University. We thank Prof. Shoichi Iseki in Kanazawa University for fruitful discussion. This study was supported in part by a Grant-in-Aid for Scientific Research provided by the Ministry of Education, Science and Culture of Japan, and a grant from the Mochida Memorial Foundation (Tokyo, Japan) for Medical and Pharmaceutical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Tsuji.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table I

(DOC 99 kb)

Supplementary Table II

(DOC 129 kb)

Supplementary Table III

(DOC 210 kb)

Supplementary Figure 1

(PDF 446 kb)

Supplementary Figure 2

(PDF 2058 kb)

Supplementary Figure 3

(PDF 284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, Y., Kubo, Y., Iwata, D. et al. Gene Knockout and Metabolome Analysis of Carnitine/Organic Cation Transporter OCTN1. Pharm Res 27, 832–840 (2010). https://doi.org/10.1007/s11095-010-0076-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0076-z

KEY WORDS

Navigation