Skip to main content
Log in

Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The development of Pichia pastoris as a production platform for recombinant proteins has been a remarkable success story over the last three decades. Stable cheap production processes and the good protein secretion abilities were pacemakers of this development. However, limitations of protein folding, glycosylation or secretion have been identified quite early on. With the availability of genome sequences and the development of systems biology characterization in the last 5 years, remarkable success in strain improvement was achieved. Here, we focus on recent developments of characterization and improvement of P. pastoris production strains regarding protein folding, intracellular trafficking, glycosylation and proteolytic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aalto MK, Ronne H, Keranen S (1993) Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. Embo J 12:4095–4104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833:2430–2437

    CAS  PubMed  Google Scholar 

  • Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317

    PubMed Central  CAS  PubMed  Google Scholar 

  • Babour A, Beckerich JM, Gaillardin C (2004) Identification of an UDP-Glc: glycoprotein glucosyltransferase in the yeast Yarrowia lipolytica. Yeast 21:11–24

    CAS  PubMed  Google Scholar 

  • Baumann K, Carnicer M, Dragosits M, Graf AB, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D, Ferrer P (2010) A multi-level study of recombinant Pichia pastoris in different oxygen conditions. BMC Syst Biol 4:141

    PubMed Central  PubMed  Google Scholar 

  • Bharucha N, Liu Y, Papanikou E, McMahon C, Esaki M, Jeffrey PD, Hughson FM, Glick BS (2013) Sec16 influences transitional ER sites by regulating rather than organizing COPII. Mol Biol Cell 24:3406–3419

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bowers K, Stevens TH (2005) Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1744:438–454

    CAS  PubMed  Google Scholar 

  • Brodsky JL, Skach WR (2011) Protein folding and quality control in the endoplasmic reticulum: recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol 23:464–475

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cabral KM, Almeida MS, Valente AP, Almeida FC, Kurtenbach E (2003) Production of the active antifungal Pisum sativum defensin 1 (Psd1) in Pichia pastoris: overcoming the inefficiency of the STE13 protease. Protein Expr Purif 31:115–122

    CAS  PubMed  Google Scholar 

  • Carnicer M, Pierich AT, Dam JV, Heijnen JJ, Albiol J, Gulik WV, Ferrer P (2012) Quantitative metabolomics analysis of amino acid metabolism in recombinant Pichia pastoris under different oxygen availability conditions. Microb Cell Factories 11:83

    CAS  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    CAS  PubMed  Google Scholar 

  • Chapman RE, Walter P (1997) Translational attenuation mediated by an mRNA intron. Curr Biol 7:850–859

    CAS  PubMed  Google Scholar 

  • Choi BK, Warburton S, Lin H, Patel R, Boldogh I, Meehl M, d’Anjou M, Pon L, Stadheim TA, Sethuraman N (2012) Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris. Appl Microbiol Biotechnol 95:671–682

    CAS  PubMed  Google Scholar 

  • Chung BK, Lee DY (2012) Computational codon optimization of synthetic gene for protein expression. BMC Syst Biol 6:134

    PubMed Central  CAS  PubMed  Google Scholar 

  • Conibear E, Stevens TH (1998) Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochim Biophys Acta 1404:211–230

    CAS  PubMed  Google Scholar 

  • Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87:391–404

    CAS  PubMed  Google Scholar 

  • Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    CAS  PubMed  Google Scholar 

  • Damasceno L, Anderson K, Ritter G, Cregg J, Old L, Batt C (2006) Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Appl Microbiol Biotechnol 74:381–389

    PubMed  Google Scholar 

  • Dean N (1999) Asparagine-linked glycosylation in the yeast Golgi. Biochim Biophys Acta 1426:309–322

    CAS  PubMed  Google Scholar 

  • Delic M, Mattanovich D, Gasser B (2010) Monitoring intracellular redox conditions in the endoplasmic reticulum of living yeasts. FEMS Microbiol Lett 306:61–66

    CAS  PubMed  Google Scholar 

  • Delic M, Rebnegger C, Wanka F, Puxbaum V, Haberhauer-Troyer C, Hann S, Köllensperger G, Mattanovich D, Gasser B (2012) Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast. Free Radic Biol Med 52:2000–2012

    CAS  PubMed  Google Scholar 

  • Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B (2013) The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 37:872–914

    CAS  PubMed  Google Scholar 

  • Delic M, Gongrich R, Mattanovich D, Gasser B (2014) Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Antioxid Redox Signal 21:414–437

    CAS  PubMed  Google Scholar 

  • Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Sauer M, Altmann F, Ferrer P, Mattanovich D (2009) The effect of temperature on the proteome of recombinant Pichia pastoris. J Proteome Res 8:1380–1392

    CAS  PubMed  Google Scholar 

  • Dragosits M, Stadlmann J, Graf A, Gasser B, Maurer M, Sauer M, Kreil DP, Altmann F, Mattanovich D (2010) The response to unfolded protein is involved in osmotolerance of Pichia pastoris. BMC Genomics 11:207

    PubMed Central  PubMed  Google Scholar 

  • Dube S, Fisher JW, Powell JS (1988) Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion, and biological function. J Biol Chem 263:17516–17521

    CAS  PubMed  Google Scholar 

  • Esaki M, Liu Y, Glick BS (2006) The budding yeast Pichia pastoris has a novel Sec23p homolog. FEBS Lett 580:5215–5221

    CAS  PubMed  Google Scholar 

  • Fernandez FS, Trombetta SE, Hellman U, Parodi AJ (1994) Purification to homogeneity of UDP-glucose: glycoprotein glucosyltransferase from Schizosaccharomyces pombe and apparent absence of the enzyme from Saccharomyces cerevisiae. J Biol Chem 269:30701–30706

    CAS  PubMed  Google Scholar 

  • Fitzgerald I, Glick BS (2014) Secretion of a foreign protein from budding yeasts is enhanced by cotranslational translocation and by suppression of vacuolar targeting. Microb Cell Factories 13:125

    Google Scholar 

  • Gagnon-Arsenault I, Tremblay J, Bourbonnais Y (2006) Fungal yapsins and cell wall: a unique family of aspartic peptidases for a distinctive cellular function. FEMS Yeast Res 6:966–978

    CAS  PubMed  Google Scholar 

  • Gasser B, Maurer M, Gach J, Kunert R, Mattanovich D (2006) Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnol Bioeng 94:353–361

    CAS  PubMed  Google Scholar 

  • Gasser B, Maurer M, Rautio J, Sauer M, Bhattacharyya A, Saloheimo M, Penttilä M, Mattanovich D (2007a) Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions. BMC Genomics 8:179

    PubMed Central  PubMed  Google Scholar 

  • Gasser B, Sauer M, Maurer M, Stadlmayr G, Mattanovich D (2007b) Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl Environ Microbiol 73:6499–6507

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, Puxbaum V, Sauer M, Mattanovich D (2013) Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiol 8:191–208

    CAS  PubMed  Google Scholar 

  • Gerst JE, Rodgers L, Riggs M, Wigler M (1992) SNC1, a yeast homolog of the synaptic vesicle-associated membrane protein/synaptobrevin gene family: genetic interactions with the RAS and CAP genes. Proc Natl Acad Sci U S A 89:4338–4342

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gong B, Burnina I, Stadheim TA, Li H (2013) Glycosylation characterization of recombinant human erythropoietin produced in glycoengineered Pichia pastoris by mass spectrometry. J Mass Spectrom 48:1308–1317

    CAS  PubMed  Google Scholar 

  • Gong B, Burnina I, Lynaugh H, Li H (2014) O-linked glycosylation analysis of recombinant human granulocyte colony-stimulating factor produced in glycoengineered Pichia pastoris by liquid chromatography and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 945–946:135–140

    PubMed  Google Scholar 

  • Govindappa N, Hanumanthappa M, Venkatarangaiah K, Kanojia K, Venkatesan K, Chatterjee A, Kusumanchi M, Dave N, Hazra P, Tiwari S, Sastry K (2013) PMT1 gene plays a major role in O-mannosylation of insulin precursor in Pichia pastoris. Protein Expr Purif 88:164–171

    CAS  PubMed  Google Scholar 

  • Graf A, Gasser B, Dragosits M, Sauer M, Leparc GG, Tüchler T, Kreil DP, Mattanovich D (2008) Novel insights into the unfolded protein response using Pichia pastoris specific DNA microarrays. BMC Genomics 9:390

    PubMed Central  PubMed  Google Scholar 

  • Guerfal M, Ryckaert S, Jacobs PP, Ameloot P, Van Craenenbroeck K, Derycke R, Callewaert N (2010) The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microb Cell Factories 9:49

    Google Scholar 

  • Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18:387–392

    CAS  PubMed  Google Scholar 

  • Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246

    CAS  PubMed  Google Scholar 

  • Hamilton SR, Cook WJ, Gomathinayagam S, Burnina I, Bukowski J, Hopkins D, Schwartz S, Du M, Sharkey NJ, Bobrowicz P, Wildt S, Li H, Stadheim TA, Nett JH (2013) Production of sialylated O-linked glycans in Pichia pastoris. Glycobiology 23:1192–1203

    CAS  PubMed  Google Scholar 

  • Harsay E, Schekman R (2002) A subset of yeast vacuolar protein sorting mutants is blocked in one branch of the exocytic pathway. J Cell Biol 156:271–285

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hatahet F, Ruddock LW (2009) Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 11:2807–2850

    CAS  PubMed  Google Scholar 

  • Hesketh AR, Castrillo JI, Sawyer T, Archer DB, Oliver SG (2013) Investigating the physiological response of Pichia (Komagataella) pastoris GS115 to the heterologous expression of misfolded proteins using chemostat cultures. Appl Microbiol Biotechnol 97:9747–9762

    PubMed Central  CAS  Google Scholar 

  • Hohenblum H, Gasser B, Maurer M, Borth N, Mattanovich D (2004) Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng 85:367–375

    CAS  PubMed  Google Scholar 

  • Hoseki J, Ushioda R, Nagata K (2010) Mechanism and components of endoplasmic reticulum-associated degradation. J Biochem 147:19–25

    CAS  PubMed  Google Scholar 

  • Idiris A, Tohda H, Bi KW, Isoai A, Kumagai H, Giga-Hama Y (2006) Enhanced productivity of protease-sensitive heterologous proteins by disruption of multiple protease genes in the fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 73:404–420

    CAS  PubMed  Google Scholar 

  • Inan M, Aryasomayajula D, Sinha J, Meagher MM (2006) Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnol Bioeng 93:771–778

    CAS  PubMed  Google Scholar 

  • Jacobs PP, Inan M, Festjens N, Haustraete J, Van Hecke A, Contreras R, Meagher MM, Callewaert N (2010) Fed-batch fermentation of GM-CSF-producing glycoengineered Pichia pastoris under controlled specific growth rate. Microb Cell Factories 9:93

    CAS  Google Scholar 

  • Jensen D, Schekman R (2011) COPII-mediated vesicle formation at a glance. J Cell Sci 124:1–4

    CAS  PubMed  Google Scholar 

  • Jorda J, de Jesus SS, Peltier S, Ferrer P, Albiol J (2014) Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids. N Biotechnol 31:120–132

    CAS  PubMed  Google Scholar 

  • Kauffman KJ, Pridgen EM, Doyle FJ 3rd, Dhurjati PS, Robinson AS (2002) Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae. Biotechnol Prog 18:942–950

    CAS  PubMed  Google Scholar 

  • Khatri NK, Gocke D, Trentmann O, Neubauer P, Hoffmann F (2011) Single-chain antibody fragment production in Pichia pastoris: benefits of prolonged pre-induction glycerol feeding. Biotechnol J 6:452–462

    CAS  PubMed  Google Scholar 

  • Kjeldsen T, Pettersson AF, Hach M (1999) Secretory expression and characterization of insulin in Pichia pastoris. Biotechnol Appl Biochem 29(Pt 1):79–86

    CAS  PubMed  Google Scholar 

  • Kohno K (2010) Stress-sensing mechanisms in the unfolded protein response: similarities and differences between yeast and mammals. J Biochem 147:27–33

    CAS  PubMed  Google Scholar 

  • Krysan DJ, Ting EL, Abeijon C, Kroos L, Fuller RS (2005) Yapsins are a family of aspartyl proteases required for cell wall integrity in Saccharomyces cerevisiae. Eukaryot Cell 4:1364–1374

    PubMed Central  CAS  PubMed  Google Scholar 

  • Larsen S, Weaver J, de Sa Campos K, Bulahan R, Nguyen J, Grove H, Huang A, Low L, Tran N, Gomez S, Yau J, Ilustrisimo T, Kawilarang J, Lau J, Tranphung M, Chen I, Tran C, Fox M, Lin-Cereghino J, Lin-Cereghino GP (2013) Mutant strains of Pichia pastoris with enhanced secretion of recombinant proteins. Biotechnol Lett 35:1925–1935

    CAS  PubMed  Google Scholar 

  • Lesage G, Shapiro J, Specht CA, Sdicu AM, Ménard P, Hussein S, Tong AH, Boone C, Bussey H (2005) An interactional network of genes involved in chitin synthesis in Saccharomyces cerevisiae. BMC Genet 6:8

    PubMed Central  PubMed  Google Scholar 

  • Liang S, Wang B, Pan L, Ye Y, He M, Han S, Zheng S, Wang X, Lin Y (2012) Comprehensive structural annotation of Pichia pastoris transcriptome and the response to various carbon sources using deep paired-end RNA sequencing. BMC Genomics 13:738

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin XQ, Liang SL, Han SY, Zheng SP, Ye YR, Lin Y (2013) Quantitative iTRAQ LC-MS/MS proteomics reveals the cellular response to heterologous protein overexpression and the regulation of HAC1 in Pichia pastoris. J Proteomics 91:58–72

    CAS  PubMed  Google Scholar 

  • Lin-Cereghino GP, Stark CM, Kim D, Chang J, Shaheen N, Poerwanto H, Agari K, Moua P, Low LK, Tran N, Huang AD, Nattestad M, Oshiro KT, Chang JW, Chavan A, Tsai JW, Lin-Cereghino J (2013) The effect of alpha-mating factor secretion signal mutations on recombinant protein expression in Pichia pastoris. Gene 519:311–317

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Wu D, Wu J, Chen J (2013) Optimization of the production of Aspergillus niger α-glucosidase expressed in Pichia pastoris. World J Microbiol Biotechnol 29:533–540

    CAS  PubMed  Google Scholar 

  • Loos A, Steinkellner H (2012) IgG-Fc glycoengineering in non-mammalian expression hosts. Arch Biochem Biophys 526:167–173

    CAS  PubMed  Google Scholar 

  • Losev E, Reinke CA, Jellen J, Strongin DE, Bevis BJ, Glick BS (2006) Golgi maturation visualized in living yeast. Nature 441:1002–1006

    CAS  PubMed  Google Scholar 

  • Love KR, Politano TJ, Panagiotou V, Jiang B, Stadheim TA, Love JC (2012) Systematic single-cell analysis of Pichia pastoris reveals secretory capacity limits productivity. PLoS One 7:e37915

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maccani A, Landes N, Stadlmayr G, Maresch D, Leitner C, Maurer M, Gasser B, Ernst W, Kunert R, Mattanovich D (2014) Pichia pastoris secretes recombinant proteins less efficiently than Chinese hamster ovary cells but allows higher space-time yields for less complex proteins. Biotechnol J 9:526–537

    PubMed Central  CAS  PubMed  Google Scholar 

  • Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716–731

    PubMed Central  CAS  PubMed  Google Scholar 

  • Margittai E, Sitia R (2011) Oxidative protein folding in the secretory pathway and redox signaling across compartments and cells. Traffic 12:1–8

    CAS  PubMed  Google Scholar 

  • Marx H, Sauer M, Resina D, Vai M, Porro D, Valero F, Ferrer P, Mattanovich D (2006) Cloning, disruption and protein secretory phenotype of the GAS1 homologue of Pichia pastoris. FEMS Microbiol Lett 264:40–47

    CAS  PubMed  Google Scholar 

  • Marx H, Mecklenbrauker A, Gasser B, Sauer M, Mattanovich D (2009) Directed gene copy number amplification in Pichia pastoris by vector integration into the ribosomal DNA locus. FEMS Yeast Res 9:1260–1270

    CAS  PubMed  Google Scholar 

  • Massahi A, Calik P (2015) In-silico determination of Pichia pastoris signal peptides for extracellular recombinant protein production. J Theor Biol 364:179–188

    CAS  PubMed  Google Scholar 

  • Meehl MA, Stadheim TA (2014) Biopharmaceutical discovery and production in yeast. Curr Opin Biotechnol 30:120–127

    CAS  PubMed  Google Scholar 

  • Meuris L, Santens F, Elson G, Festjens N, Boone M, Dos Santos A, Devos S, Rousseau F, Plets E, Houthuys E, Malinge P, Magistrelli G, Cons L, Chatel L, Devreese B, Callewaert N (2014) GlycoDelete engineering of mammalian cells simplifies N-glycosylation of recombinant proteins. Nat Biotechnol 32:485–489

    CAS  PubMed  Google Scholar 

  • Mogelsvang S, Gomez-Ospina N, Soderholm J, Glick BS, Staehelin LA (2003) Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. Mol Biol Cell 14:2277–2291

    PubMed Central  CAS  PubMed  Google Scholar 

  • Montegna EA, Bhave M, Liu Y, Bhattacharyya D, Glick BS (2012) Sec12 binds to Sec16 at transitional ER sites. PLoS One 7:e31156

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mori K, Kawahara T, Yoshida H, Yanagi H, Yura T (1996) Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells 1:803–817

    CAS  PubMed  Google Scholar 

  • Nett JH, Cook WJ, Chen MT, Davidson RC, Bobrowicz P, Kett W, Brevnova E, Potgieter TI, Mellon MT, Prinz B, Choi BK, Zha D, Burnina I, Bukowski JT, Du M, Wildt S, Hamilton SR (2013) Characterization of the Pichia pastoris protein-O-mannosyltransferase gene family. PLoS One 8:e68325

    PubMed Central  CAS  PubMed  Google Scholar 

  • Papanikou E, Glick BS (2014) Golgi compartmentation and identity. Curr Opin Cell Biol 29:74–81

    CAS  PubMed  Google Scholar 

  • Parekh R, Forrester K, Wittrup D (1995) Multicopy overexpression of bovine pancreatic trypsin inhibitor saturates the protein folding and secretory capacity of Saccharomyces cerevisiae. Protein Expr Purif 6:537–545

    CAS  PubMed  Google Scholar 

  • Pelham HR, Hardwick KG, Lewis MJ (1988) Sorting of soluble ER proteins in yeast. Embo J 7:1757–1762

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pfeffer M, Maurer M, Kollensperger G, Hann S, Graf AB, Mattanovich D (2011) Modeling and measuring intracellular fluxes of secreted recombinant protein in Pichia pastoris with a novel 34S labeling procedure. Microb Cell Factories 10:47

    CAS  Google Scholar 

  • Pfeffer M, Maurer M, Stadlmann J, Grass J, Delic M, Altmann F, Mattanovich D (2012) Intracellular interactome of secreted antibody Fab fragment in Pichia pastoris reveals its routes of secretion and degradation. Appl Microbiol Biotechnol 93:2503–2512

    CAS  PubMed  Google Scholar 

  • Protopopov V, Govindan B, Novick P, Gerst JE (1993) Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell 74:855–861

    CAS  PubMed  Google Scholar 

  • Rakestraw JA, Sazinsky SL, Piatesi A, Antipov E, Wittrup KD (2009) Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol Bioeng 103:1192–1201

    PubMed Central  CAS  PubMed  Google Scholar 

  • Resina D, Bollok M, Khatri NK, Valero F, Neubauer P, Ferrer P (2007) Transcriptional response of P. pastoris in fed-batch cultivations to Rhizopus oryzae lipase production reveals UPR induction. Microb Cell Factories 6:21

    Google Scholar 

  • Rossanese OW, Soderholm J, Bevis BJ, Sears IB, O’Connor J, Williamson EK, Glick BS (1999) Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J Cell Biol 145:69–81

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruohonen L, Toikkanen J, Tieaho V, Outola M, Soderlund H, Keranen S (1997) Enhancement of protein secretion in Saccharomyces cerevisiae by overproduction of Sso protein, a late-acting component of the secretory machinery. Yeast 13:337–351

    CAS  PubMed  Google Scholar 

  • Sagt CM, Muller WH, van der Heide L, Boonstra J, Verkleij AJ, Verrips CT (2002) Impaired cutinase secretion in Saccharomyces cerevisiae induces irregular endoplasmic reticulum (ER) membrane proliferation, oxidative stress, and ER-associated degradation. Appl Environ Microbiol 68:2155–2160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schuck S, Gallagher CM, Walter P (2014) ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J Cell Sci 127:4078–4088

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sidrauski C, Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90:1031–1039

    CAS  PubMed  Google Scholar 

  • Sidrauski C, Cox JS, Walter P (1996) tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87:405–413

    CAS  PubMed  Google Scholar 

  • Silva CI, Teles H, Moers AP, Eggink G, de Wolf FA, Werten MW (2011) Secreted production of collagen-inspired gel-forming polymers with high thermal stability in Pichia pastoris. Biotechnol Bioeng 108:2517–2525

    CAS  PubMed  Google Scholar 

  • Stadlmayr G, Benakovitsch K, Gasser B, Mattanovich D, Sauer M (2010) Genome-scale analysis of library sorting (GALibSo): isolation of secretion enhancing factors for recombinant protein production in Pichia pastoris. Biotechnol Bioeng 105:543–555

    CAS  PubMed  Google Scholar 

  • TerBush DR, Maurice T, Roth D, Novick P (1996) The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. Embo J 15:6483–6494

    PubMed Central  CAS  PubMed  Google Scholar 

  • Toikkanen JH, Sundqvist L, Keranen S (2004) Kluyveromyces lactis SSO1 and SEB1 genes are functional in Saccharomyces cerevisiae and enhance production of secreted proteins when overexpressed. Yeast 21:1045–1055

    CAS  PubMed  Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    CAS  PubMed  Google Scholar 

  • Vad R, Nafstad E, Dahl L, Gabrielsen O (2005) Engineering of a Pichia pastoris expression system for secretion of high amounts of intact human parathyroid hormone. J Biotechnol 116:251–260

    CAS  PubMed  Google Scholar 

  • Vai M, Orlandi I, Cavadini P, Alberghina L, Popolo L (1996) Candida albicans homologue of GGP1/GAS1 gene is functional in Saccharomyces cerevisiae and contains the determinants for glycosylphosphatidylinositol attachment. Yeast 12:361–368

    CAS  PubMed  Google Scholar 

  • Vai M, Brambilla L, Orlandi I, Rota N, Ranzi BM, Alberghina L, Porro D (2000) Improved secretion of native human insulin-like growth factor 1 from gas1 mutant Saccharomyces cerevisiae cells. Appl Environ Microbiol 66:5477–5479

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vanz AL, Lunsdorf H, Adnan A, Nimtz M, Gurramkonda C, Khanna N, Rinas U (2012) Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: catabolic adaptation, stress responses, and autophagic processes. Microb Cell Factories 11:103

    CAS  Google Scholar 

  • Vanz AL, Nimtz M, Rinas U (2014) Decrease of UPR- and ERAD-related proteins in Pichia pastoris during methanol-induced secretory insulin precursor production in controlled fed-batch cultures. Microb Cell Factories 13:23

    Google Scholar 

  • Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vervecken W, Kaigorodov V, Callewaert N, Geysens S, De Vusser K, Contreras R (2004) In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl Environ Microbiol 70:2639–2646

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vogl T, Glieder A (2013) Regulation of Pichia pastoris promoters and its consequences for protein production. N Biotechnol 30:385–404

    CAS  PubMed  Google Scholar 

  • Vogl T, Thallinger GG, Zellnig G, Drew D, Cregg JM, Glieder A, Freigassner M (2014) Towards improved membrane protein production in Pichia pastoris: general and specific transcriptional response to membrane protein overexpression. N Biotechnol 31:538–552

    CAS  PubMed  Google Scholar 

  • Whyteside G, Alcocer MJ, Kumita JR, Dobson CM, Lazarou M, Pleass RJ, Archer DB (2011a) Native-state stability determines the extent of degradation relative to secretion of protein variants from Pichia pastoris. PLoS One 6:e22692

    PubMed Central  CAS  PubMed  Google Scholar 

  • Whyteside G, Nor RM, Alcocer MJ, Archer DB (2011b) Activation of the unfolded protein response in Pichia pastoris requires splicing of a HAC1 mRNA intron and retention of the C-terminal tail of Hac1p. FEBS Lett 585:1037–1041

    CAS  PubMed  Google Scholar 

  • Worby CA, Dixon JE (2014) Unpacking the unfolded protein response. Cell 158:1221–1224

    CAS  PubMed  Google Scholar 

  • Wu M, Shen Q, Yang Y, Zhang S, Qu W, Chen J, Sun H, Chen S (2013) Disruption of YPS1 and PEP4 genes reduces proteolytic degradation of secreted HSA/PTH in Pichia pastoris GS115. J Ind Microbiol Biotechnol 40:589–599

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang S, Kuang Y, Li H, Liu Y, Hui X, Li P, Jiang Z, Zhou Y, Wang Y, Xu A, Li S, Liu P, Wu D (2013) Enhanced production of recombinant secretory proteins in Pichia pastoris by optimizing Kex2 P1’ site. PLoS One 8:e75347

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ye J, Ly J, Watts K, Hsu A, Walker A, McLaughlin K, Berdichevsky M, Prinz B, Sean Kersey D, d’Anjou M, Pollard D, Potgieter T (2011) Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnol Prog 27:1744–1750

    CAS  PubMed  Google Scholar 

  • Zanetti G, Prinz S, Daum S, Meister A, Schekman R, Bacia K, Briggs JA (2013) The structure of the COPII transport-vesicle coat assembled on membranes. Elife 2:e00951

    PubMed Central  PubMed  Google Scholar 

  • Zhang W, Zhao HL, Xue C, Xiong XH, Yao XQ, Li XY, Chen HP, Liu ZM (2006) Enhanced secretion of heterologous proteins in Pichia pastoris following overexpression of Saccharomyces cerevisiae chaperone proteins. Biotechnol Prog 22:1090–1095

    CAS  PubMed  Google Scholar 

  • Zhong Y, Yang L, Guo Y, Fang F, Wang D, Li R, Jiang M, Kang W, Ma J, Sun J, Xiao W (2014) High-temperature cultivation of recombinant Pichia pastoris increases endoplasmic reticulum stress and decreases production of human interleukin-10. Microb Cell Factories 13:163

    Google Scholar 

Download references

Acknowledgments

Research on Pichia pastoris in our laboratory is supported by the Austrian Science Fund (FWF), the Austrian Research Promotion Agency and by the Federal Ministry of Science, Research and Economy (BMWFW), the Federal Ministry of Traffic, Innovation and Technology (bmvit), the Styrian Business Promotion Agency SFG, the Standortagentur Tirol and ZIT—Technology Agency of the City of Vienna through the COMET-Funding Program managed by the Austrian Research Promotion Agency FFG. Further support by Polymun Scientific GmbH, Biomin Research Center, Boehringer-Ingelheim RCV, Lonza AG, Biocrates Life Sciences AG, VTU Technology GmbH and Sandoz GmbH is acknowledged. We thank the BOKU-VIBT Imaging Center for access to Leica fluorescence microscope devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethard Mattanovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puxbaum, V., Mattanovich, D. & Gasser, B. Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris . Appl Microbiol Biotechnol 99, 2925–2938 (2015). https://doi.org/10.1007/s00253-015-6470-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6470-z

Keywords

Navigation