Skip to main content
Log in

Intramolecular Interactions in the Fluorophore–Quencher System in Linear and Hairpin Probes for Real-Time PCR

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The hairpin probe is characterized by a higher fluorescence quenching efficiency as compared with the linear one under the conditions of real-time PCR, which leads to a lower background level of fluorescence and, consequently, a higher signal to noise ratio during real-time PCR. An experimental comparison of the fluorescence-quenching efficiency of two oligonucleotide probes in different conformations (hairpin in a molecular beacon format and linear in a TaqMan format) was made. There is a difference in the interaction between the quencher and fluorophore for the probes of different conformations. For a linear probe, quenching occurs through the mechanism of inductive-resonance energy transfer (Förster resonance energy transfer, FRET), while that for a hairpin probe quenching occurs through contact quenching through a closer arrangement of the fluorophore and quencher, but a resonant energy transfer according to the Förster mechanism is also possible. It was demonstrated that the absorption spectrum for the linear probe almost coincides with the absorption spectrum of an oligonucleotide representing a probe without a quencher, which indicates a dynamic (Förster) mechanism of energy transfer. On the contrary, the absorption spectra for the hairpin probe and oligonucleotide representing the probe without a quencher differ significantly, which indicates a contact mechanism of energy transfer between the fluorophore and fluorescence quencher. The fluorescence spectra of the probes and their complexes with the oligonucleotide complementary to the linear probe (and the loop of the hairpin probe) and the amplicon (200 bp in length containing a DNA target for the probes) allowed for comparison of these two probes by comparing the energy migration radii, the efficiency of donor fluorescence quenching. The energy migration radius R calculated by the experimental data was 32.4 Å for the hairpin probe and 47.3 Å for the linear probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Demchenko, A.P., Introduction in Fluorescence Sensing, Berlin: Springer Science and Business Media, 2009.

    Book  Google Scholar 

  2. Dexter, D.L., A theory of sensitized luminescence in solids, J. Chem. Phys., 1953, vol. 21, pp. 836–850. https://doi.org/10.1063/1.1699044

    Article  CAS  Google Scholar 

  3. Forster, T., Zwischenmolekulare energiewanderung und fluoreszenz, Ann. Phys. (Leipzig), 1948, vol. 2, p. 55. https://doi.org/10.1002/andp.19484370105

    Article  CAS  Google Scholar 

  4. Hadjinicolaou, A.V., Demetriou, V.L., Hezka, J., et al., Use of molecular beacons and multi-allelic real-time PCR for detection of and discrimination between virulent Bacillus anthracis and other Bacillus isolates, J. Microbiol. Methods, 2009, vol. 78, pp. 45–53. https://doi.org/10.1016/j.mimet.2009.04.005

    Article  CAS  PubMed  Google Scholar 

  5. Howell, W.M., Jobs, I.M., and Brookes, A.J., iFRET: An improved fluorescence system for DNA-melting analysis, Genome Res., 2002, vol. 12, pp. 1401–1407. http://www.genome.org/cgi/doi/10.1101/gr.297202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hunyadi, S. and Murphy, C., Tunable one-dimensional silver-silica nanopeapod architectures, J. Phys. Chem. B., 2006, vol. 110, pp. 7226–7231. https://doi.org/10.1021/jp0603076

    Article  CAS  PubMed  Google Scholar 

  7. Inokuti, M. and Hirayama, F., Influence of energy transfer by the exchange mechanism on donor luminescence, J. Chem. Phys., 1965, vol. 43, p. 1978. https://doi.org/10.1063/1.1697063

    Article  CAS  Google Scholar 

  8. Josefsen, M.H., Löfström, C., Sommer, H.M., et al., Diagnostic PCR: Comparative sensitivity of four probe chemistries, Mol. Cell. Probes, 2009, vol. 23, pp. 201–203. https://doi.org/10.1016/j.mcp.2009.02.03

    Article  CAS  PubMed  Google Scholar 

  9. Kapanidis, A. and Weiss, S., Fluorescent probes and bioconjugation chemistries for single molecule fluorescence analysis of biomolecules, J. Chem. Phys., 2002, vol. 117, pp. 10953–10964. https://doi.org/10.1063/1.1521158

    Article  CAS  Google Scholar 

  10. Krasnoperov, L.N., Marras, S.A., Kozlov, M., et al., Luminescent probes for ultrasensitive detection of nucleic acids, Bioconjugate Chem., 2010, vol. 21, pp. 319–327. https://doi.org/10.1021/bc900403n

    Article  CAS  Google Scholar 

  11. Lakowicz, J.R., Principles of Fluorescence Spectroscopy, New York: Springer-Verlag, 2007.

    Google Scholar 

  12. Latorra, D., Arar, K., and Hurley, J.M., Design considerations and effects of LNA in PCR primers, Mol. Cell. Probes, 1986, vol. 17, pp. 253–259. https://doi.org/10.1016/s0890-8508(03)00062-8

    Article  Google Scholar 

  13. Le Reste, L., Hohlbein, J., Gryte, K., et al., Characterization of dark quencher chromophores as nonfluorescent acceptors for single-molecule FRET, Biophys. J., 2012, vol. 102, pp. 2658–2668. https://doi.org/10.1016/j.bpj.2012.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Limanskaya, O.Yu., Murtazaeva, L.Î., and Limanskii, A.P., Species specific detection of causative agent of anthrax, Biotechnology, 2012, vol. 5, no. 1, pp. 92–99.

    Google Scholar 

  15. Ma, C., Liu, H., Wu, K., et al., An exonuclease I-based quencher-free fluorescent method using DNA hairpin probes for rapid detection of microRNA, Sensors, 2017, vol. 17, p. 760. https://doi.org/10.3390/s17040760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marras, S., Interactive fluorophore and quencher pairs for labeling fluorescent nucleic acid hybridization probes, Mol. Biotechnol., 2008, vol. 38, pp. 247–255. https://doi.org/10.1007/s12033-007-9012-9

    Article  CAS  PubMed  Google Scholar 

  17. Marras, S., Kramer, F., and Tyagi, S., Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes, Nucleic Acids Res., 2002, vol. 30, p. e122. https://doi.org/10.1093/nar/gnf121

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marras, S.A., Kramer, F.R., and Tyagi, S., Genotyping SNPs with molecular beacons, Methods Mol. Biol., 2003, vol. 212, pp. 111–128. https://doi.org/10.1385/1-59259-327-5:111

    Article  CAS  PubMed  Google Scholar 

  19. Miura, M., Tanigawa, C., Fujii, Y., et al., Comparison of six commercially-available DNA polymerases for direct PCR, Rev. Inst. Med. Trop. Sao Paulo, 2013, vol. 55, pp. 401–406. https://doi.org/10.1590/S0036-46652013000600005

    Article  PubMed  PubMed Central  Google Scholar 

  20. Munoz, C., Talquenca, S.G., and Volpe, M.L., Tetra primer ARMS-PCR for identification of SNP in β-tubulin of Botrytis cinerea, responsible of resistance to benzimidazole, J. Microbiol. Methods, 2009, vol. 78, pp. 245–246. https://doi.org/10.1016/j.mimet.2009.06.007

    Article  CAS  PubMed  Google Scholar 

  21. Parsons, B.L., McKinzie, P.B., and Heflich, R.H., Allele-specific competitive blocker-PCR detection of rare base substitution, Methods Mol. Biol., 2005, vol. 291, pp. 235–245. https://doi.org/10.1385/1-59259-840-4:235

    Article  CAS  PubMed  Google Scholar 

  22. Sjoback, R., Nygren, J., and Kubista, M., Absorption and fluorescence properties of fluorescein, Spectrochim. Acta, Part A, 1995, vol. 51, pp. L7–L21.

    Article  Google Scholar 

  23. Takayamaa, I., Nakauchia, M., Takahashia, H., et al., Development of real-time fluorescent reverse transcription loop-mediated isothermal amplification assay with quenching primer for influenza virus and respiratory syncytial virus, J. Virol. Methods, 2019, vol. 267, pp. 53–58. https://doi.org/10.1016/j.jviromet.2019.02.010

    Article  CAS  Google Scholar 

  24. Tyagi, S. and Kramer, F.R., Molecular beacons: probes that fluoresce upon hybridization, Nat. Biotechnol., 1996, vol. 14, pp. 303–308. https://doi.org/10.1038/nbt0396-303

    Article  CAS  PubMed  Google Scholar 

  25. Vester, B. and Wengel, J., LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA, Biochemistry, 2004, vol. 43, pp. 13233–13241. https://doi.org/10.1021/bi0485732

    Article  CAS  PubMed  Google Scholar 

  26. Wang, R.-H., Liu, L.-M., Zhao, J.-L., et al., A new method for SNP typing based on allele specific PCR, Fa Yi Xue Za Zhi, 2008, vol. 24, pp. 189–193.

    CAS  PubMed  Google Scholar 

  27. Wu, D.Y., Ugozzoli, L., Pal, B.K., and Wallace, R.B., Allele-specific enzymatic amplification of β-globin genomic DNA for diagnosis of sickle cell anemia, Proc. Natl. Acad. Sci. U. S. A., 1989, vol. 86, pp. 2757–2760. https://doi.org/10.1073/pnas.86.8.2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yaku, H., Yukimasa, T., Nakano, S., et al., Design of allele-specific primers and detection of the human ABO genotyping to avoid the pseudopositive problems, Electrophoresis, 2008, vol. 29, pp. 4130–4140. https://doi.org/10.1002/elps.200800097

    Article  CAS  PubMed  Google Scholar 

  29. Zimmers, Z.A., Adam, N.M., Gabella, W.E., et al., Fluorophore-quencher interactions effect on hybridization characteristics of complementary oligonucleotides, Anal. Methods, 2019, vol. 11, pp. 2862–2867. https://doi.org/10.1039/c9ay00584f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction, Nucl. Acids Res., 2003, vol. 31, pp. 3406–3415. https://doi.org/10.1093/nar/gkg595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to L.A. Murtazaeva for the assistance in performing spectral studies and to Doctor in Physics and Mathematics, Professor of Karazin Kharkiv National University G.P. Gorbenko.

Funding

This study was supported by Doctor in Biology O.Yu. Limanskaya and Doctor in Biology O.P. Limanskii without the external funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. Yu. Limanskaya or O. P. Limanskii.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving human participants and animals as objects.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limanskaya, O.Y., Limanskii, O.P. Intramolecular Interactions in the Fluorophore–Quencher System in Linear and Hairpin Probes for Real-Time PCR. Cytol. Genet. 57, 134–141 (2023). https://doi.org/10.3103/S009545272302007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545272302007X

Navigation