Skip to main content
Log in

Development and Challenge of Fluorescent Probes for Bioimaging Applications: From Visualization to Diagnosis

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Fluorescent probes have been used widely in bioimaging, including biological substance detection, cell imaging, in vivo biochemical reaction process tracking, and disease biomarker monitoring, and have gradually occupied an indispensable position. Compared with traditional biological imaging technologies, such as positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI), the attractive advantages of fluorescent probes, such as real-time imaging, in-depth visualization, and less damage to biological samples, have made them increasingly popular. Among them, ultraviolet–visible (UV–vis) fluorescent probes still occupy the mainstream in the field of fluorescent probes due to the advantages of available structure, simple synthesis, strong versatility, and wide application. In recent years, fluorescent probes have become an indispensable tool for bioimaging and have greatly promoted the development of diagnostics. In this review, we focus on the structure, design strategies, advantages, representative probes and latest discoveries in application fields of UV–visible fluorescent probes developed in the past 3–5 years based on several fluorophores. We look forward to future development trends of fluorescent probes from the perspective of bioimaging and diagnostics. This comprehensive review may facilitate the development of more powerful fluorescent sensors for broad and exciting applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

c Reproduced with permission [43]. Copyright 2018, Elsevier B.V. d Reproduced with permission [44]. Copyright 2020, Elsevier B.V. e Reproduced with permission [38]. Copyright 2019, Elsevier B.V. f Reproduced with permission [46]. Copyright 2019, The American Chemical Society. g Reproduced with permission [48]. Copyright 2021, The American Chemical Society

Fig. 3

b Reproduced with permission [54]. Copyright 2019, Elsevier B.V. c Reproduced with permission [57]. Copyright 2018, Elsevier B.V.

Fig. 4

c Reproduced with permission [60]. Copyright 2019, Elsevier B.V. d Reproduced with permission [61]. Copyright 2018, Elsevier B.V. e Reproduced with permission [62]. Copyright 2019, Elsevier B.V. f Reproduced with permission [63]. Copyright 2020, Elsevier B.V. g Reproduced with permission [64]. Copyright 2021, The American Chemical Society

Fig. 5

b Reproduced with permission [66]. Copyright 2020, Elsevier B.V. c Reproduced with permission [67]. Copyright 2018, Elsevier B.V. d Reproduced with permission [71]. Copyright 2018, Elsevier B.V

Fig. 6

c Reproduced with permission [78]. Copyright 2019, The American Chemical Society. d Reproduced with permission [79]. Copyright 2018, The American Chemical Society. e Reproduced with permission [80]. Copyright 2018, The American Chemical Society. f Reproduced with permission [81]. Copyright 2021, The American Chemical Society

Fig. 7

a Reproduced with permission [88]. Copyright 2017, The American Chemical Society. b Reproduced with permission [89]. Copyright 2021, The American Chemical Society.

Similar content being viewed by others

References

  1. Wu Y, Wen J, Li HJ, Sun SG, Xu YQ (2017) Fluorescent probes for recognition of ATP. Chin Chem Lett 28:1916–1924. https://doi.org/10.1016/j.cclet.2017.09.032

    Article  CAS  Google Scholar 

  2. Li K, Li LL, Zhou Q, Yu KK, Kim JS, Yu XQ (2019) Reaction-based fluorescent probes for SO2 derivatives and their biological applications. Coord Chem Rev 388:310–333. https://doi.org/10.1016/j.ccr.2019.03.001

    Article  CAS  Google Scholar 

  3. Dai JN, Ma CG, Zhang P, Fu YQ, Shen BX (2020) Recent progress in the development of fluorescent probes for detection of biothiols. Dyes Pigm 177:108321. https://doi.org/10.1016/j.dyepig.2020.108321

    Article  CAS  Google Scholar 

  4. Wang K, Leng TH, Liu YJ, Wang CY, Shi P, Shen YJ, Zhu WH (2017) A novel near-infrared fluorescent probe with a large stokes shift for the detection and imaging of biothiols. Sens Actuators B 248:338–345. https://doi.org/10.1016/j.snb.2017.03.127

    Article  CAS  Google Scholar 

  5. Chen D, Qin WJ, Fang HX, Wang L, Peng B, Li L, Huang W (2019) Recent progress in two-photon small molecule fluorescent probes for enzymes. Chin Chem Lett 30:1738–1744. https://doi.org/10.1016/j.cclet.2019.08.001

    Article  CAS  Google Scholar 

  6. Tang YF, Huang Y, Chen YH, Lu LX, Wang C, Sun TM, Wang M, Zhu GH, Yang Y, Zhang L, Zhu JL (2019) A coumarin derivative as a “turn-on” fluorescence probe toward Cd2+ in live cells. Spectrochim Acta Part A 218:359–365. https://doi.org/10.1016/j.saa.2019.03.104

    Article  CAS  Google Scholar 

  7. Zhang CL, Sun Q, Zhao LM, Gong SW, Liu ZP (2019) A BODIPY-based ratiometric probe for sensing and imaging hydrogen polysulfides in living cells. Spectrochim Acta Part A 223:117295. https://doi.org/10.1016/j.saa.2019.117295

    Article  CAS  Google Scholar 

  8. Jaswal S, Kumar J (2020) Review on fluorescent donor–acceptor conjugated system as molecular probes. Mater Today Proc 26:566–580. https://doi.org/10.1016/j.matpr.2019.12.161

    Article  CAS  Google Scholar 

  9. Gyasi YI, Pang YP, Li XR, Gu JX, Cheng XJ, Liu J, Xu T, Liu Y (2020) Biological applications of near infrared fluorescence dye probes in monitoring Alzheimer’s disease. Eur J Med Chem 187:111982. https://doi.org/10.1016/j.ejmech.2019.111982

    Article  CAS  PubMed  Google Scholar 

  10. Wen Y, Huo FJ, Yin CX (2019) Organelle targetable fluorescent probes for hydrogen peroxide. Chin Chem Lett 30:1834–1842. https://doi.org/10.1016/j.cclet.2019.07.006

    Article  CAS  Google Scholar 

  11. Poddar M, Misra R (2020) Recent advances of BODIPY based derivatives for optoelectronic applications. Coord Chem Rev 421:213462. https://doi.org/10.1016/j.ccr.2020.213462

    Article  CAS  Google Scholar 

  12. Chen Y (2020) Fluorescent probes for detection and bioimaging of leucine aminopeptidase. Mater Today Chem 15:100216. https://doi.org/10.1016/j.mtchem.2019.100216

    Article  CAS  Google Scholar 

  13. Wu D, Chen LY, Lee W, Ko G, Yin J, Yoon J (2018) Recent progress in the development of organic dye based near-infrared fluorescence probes for metal ions. Coord Chem Rev 354:74–97. https://doi.org/10.1016/j.ccr.2017.06.011

    Article  CAS  Google Scholar 

  14. Pandith A, Siddappa RG, Seo YJ (2019) Recent developments in novel blue/green/red/NIR small fluorescent probes for in cellulo tracking of RNA/DNA G-quadruplexes. J Photochem Photobiol C 40:81–116. https://doi.org/10.1016/j.jphotochemrev.2019.08.001

    Article  CAS  Google Scholar 

  15. Jiang XZ, Shangguan MQ, Lu Z, Yi SL, Zeng XY, Zhang YL, Hou LX (2020) A “turn-on” fluorescent probe based on V-shaped bis-coumarin for detection of hydrazine. Tetrahedron 76:130921. https://doi.org/10.1016/j.tet.2020.130921

    Article  CAS  Google Scholar 

  16. Tang LJ, Xu D, Tian MY, Yan XM (2019) A mitochondria-targetable far-red emissive fluorescence probe for highly selective detection of cysteine with a large Stokes shift. J Lumin 208:502–508. https://doi.org/10.1016/j.jlumin.2019.01.022

    Article  CAS  Google Scholar 

  17. Li HH, Guan LM, Zhang XJ, Yu H, Huang DJ, Sun MT, Wang SH (2016) A cyanine-based near-infrared fluorescent probe for highly sensitive and selective detection of hypochlorous acid and bioimaging. Talanta 161:592–598. https://doi.org/10.1016/j.talanta.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  18. Gao JH, Tao YF, Wang NN, He JL, Zhang J, Zhao WL (2018) BODIPY-based turn-on fluorescent probes for cysteine and homocysteine. Spectrochim Acta Part A 203:77–84. https://doi.org/10.1016/j.saa.2018.05.114

    Article  CAS  Google Scholar 

  19. Wang JM, Teng ZD, Cao T, Qian J, Zheng L, Cao YP, Qin WW, Guo HC (2020) Turn-on visible and ratiometric near-infrared fluorescent probes for distinction endogenous esterases and chymotrypsins in live cells. Sens Actuators B 306:127567. https://doi.org/10.1016/j.snb.2019.127567

    Article  CAS  Google Scholar 

  20. Li XC, Zhao YP, Yin JL, Lin WY (2020) Organic fluorescent probes for detecting mitochondrial membrane potential. Coord Chem Rev 420:213419. https://doi.org/10.1016/j.ccr.2020.213419

    Article  CAS  Google Scholar 

  21. Ji Y, Jones C, Baek Y et al (2020) Near-infrared fluorescence imaging in immunotherapy. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2020.06.012

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen Y (2020) Recent advances in fluorescent probes for extracellular pH detection and imaging. Anal Biochem. https://doi.org/10.1016/j.ab.2020.113900

    Article  PubMed  PubMed Central  Google Scholar 

  23. Juvekar V, Park SJ, Yoon J, Kim HM (2021) Recent progress in the two-photon fluorescent probes for metal ions. Coord Chem Rev 427:213574. https://doi.org/10.1016/j.ccr.2020.213574

    Article  CAS  Google Scholar 

  24. Wang YG, Li YF, Yan QM, Liu XL, Xia GM, Shao QQ, Liang KL, Hong LM, Chi BZ, Wang HM (2020) Benzocaine-incorporated smart 1,3-squaraine dyes: red emission, excellent stability and cell bioimaging. Dyes Pigm 173:107977. https://doi.org/10.1016/j.dyepig.2019.107977

    Article  CAS  Google Scholar 

  25. Yan CX, Zhang YT, Guo ZQ (2021) Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coord Chem Rev 427:213556. https://doi.org/10.1016/j.ccr.2020.213556

    Article  CAS  Google Scholar 

  26. Kim JJ, Lee YA, Su DD, Lee J, Park SJ, Kim B, Lee JHJ, Liu X, Kim SS, Bae MA, Lee JS, Hong SC, Wang L, Samanta A, Kwon HY, Choi SY, Kim JY, Yu YH, Ha HH, Wang ZX, Tam WL, Lim B, Kang NY, Chang YT (2019) A near-infrared probe tracks and treats lung tumor initiating cells by targeting HMOX2. J Am Chem Soc 141:14673–14686. https://doi.org/10.1021/jacs.9b06068

    Article  CAS  PubMed  Google Scholar 

  27. Chen Yi (2020) Advances in fluorescent probes for detection and imaging of endogenous tyrosinase activity. Anal Biochem 594:113614. https://doi.org/10.1016/j.ab.2020.113614

    Article  CAS  PubMed  Google Scholar 

  28. He SS, Li JC, Lyu Y, Huang JG, Pu KY (2020) Near-infrared fluorescent macromolecular reporters for real-time imaging and urinalysis of cancer immunotherapy. J Am Chem Soc 142:7075–7082. https://doi.org/10.1021/jacs.0c00659

    Article  CAS  PubMed  Google Scholar 

  29. Trenor SR, Shultz AR, Love BJ, Long TE (2004) Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Chem Rev 104:3059–3077. https://doi.org/10.2021/cr030037c

    Article  CAS  PubMed  Google Scholar 

  30. Wagner BD (2009) The use of coumarins as environmentally-sensitive fluorescent probes of heterogeneous inclusion systems. Molecules 14:210–237. https://doi.org/10.3390/molecules14010210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang Y, Feng Y, Jiang Y, Qiu FZ, Wang YZ, Song XR, Tang XL, Zhang GL, Liu WS (2019) A coumarin-based colorimetric fluorescent probe for rapid response and highly sensitive detection of hydrogen sulfide in living cells. Talanta 197:122–129. https://doi.org/10.1016/j.talanta.2018.12.081

    Article  CAS  PubMed  Google Scholar 

  32. Wang M, Wang XL, Li XY, Yang ZQ, Guo ZB, Zhang JY, Ma JJ, Wei C (2020) A coumarin-fused ‘off-on’ fluorescent probe for highly selective detection of hydrazine. Spectrochim Acta Part A 230:118075. https://doi.org/10.1016/j.saa.2020.118075

    Article  CAS  Google Scholar 

  33. Zhu L, Yang XQ, Luo XB, Hu B, Huang W (2020) A highly selective fluorescent probe based on coumarin and pyrimidine hydrazide for Cu2+ ion detection. Inorg Chem Commun 114:107823. https://doi.org/10.1016/j.inoche.2020.107823

    Article  CAS  Google Scholar 

  34. Liu Z, Liu LJ, Li JL, Qin YY, Zhao CY, Mi Y, Li GP, Li TS, Wu YJ (2019) A new coumarin-based fluorescent probe for selective recognition of Cu2+ and S2 in aqueous solution and living cells. Tetrahedron 75:3951–3957. https://doi.org/10.1016/j.tet.2019.05.057

    Article  CAS  Google Scholar 

  35. Chen CG, Vijay N, Thirumalaivasan N, Velmathi S, Wu SP (2019) Coumarin-based Hg2+ fluorescent probe: fluorescence turn-on detection for Hg2+ bioimaging in living cells and zebrafish. Spectrochim Acta Part A 219:135–140. https://doi.org/10.1016/j.saa.2019.04.048

    Article  CAS  Google Scholar 

  36. Jing XY, Yu FQ, Lin WY (2020) A fluorescent probe for specific detection of cysteine in lysosomes via dual-color mode imaging. Spectrochim Acta Part A 240:118555. https://doi.org/10.1016/j.saa.2020.118555

    Article  CAS  Google Scholar 

  37. Wei YF, Wang Y, Wei XR, Sun R, Xu YJ, Ge JF (2020) Adenine-based small molecule fluorescent probe for imaging mitochondrial nucleic acid. Spectrochim Acta Part A 229:117865. https://doi.org/10.1016/j.saa.2019.117865

    Article  CAS  Google Scholar 

  38. Meng H, Huang XQ, Lin Y, Yang DY, Lv YJ, Cao XQ, Zhang GX, Dong J, Shen SL (2019) Spectrochim Acta Part A 223:117355. https://doi.org/10.1016/j.saa.2019.117355

    Article  CAS  Google Scholar 

  39. Costela A, Garcia-Moreno I, Figuera JM, Amat-Guerri F, Sastre R (1998) Polymeric matrices for lasing dyes: recent developments. Laser Chem 18:63–84

    Article  CAS  Google Scholar 

  40. Reynolds GA, Drexhage KH (1975) New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers. Opt Commun 13:222–225

    Article  CAS  Google Scholar 

  41. Shangguan MQ, Jiang XZ, Lu Z, Zou WH, Chen YY, Xu PY, Pan YJ, Hou LX (2019) A coumarin-based fluorescent probe for hypochlorite ion detection in environmental water samples and living cells. Talanta 202:303–307. https://doi.org/10.1016/j.talanta.2019.04.074

    Article  CAS  PubMed  Google Scholar 

  42. Tang X, Zhu Z, Liu RJ, Ni L, Qiu Y, Han J, Wang Y (2019) A novel OFF-ON-OFF fluorescence probe based on coumarin for Al3+ and F- detection and bioimaging in living cells. Spectrochim Acta Part A 211:299–305. https://doi.org/10.1016/j.saa.2018.12.022

    Article  CAS  Google Scholar 

  43. Yu B, Chen CY, Ru JX, Luo WF, Liu WS (2018) A multifunctional two-photon fluorescent probe for detecting H2S in wastewater and GSH in vivo. Talanta 188:370–377. https://doi.org/10.1016/j.talanta.2018.05.076

    Article  CAS  PubMed  Google Scholar 

  44. Nguyen VN, Heo S, Kim S, Swamy KMK, Ha J, Park S, Yoon J (2020) A thiocoumarin-based turn-on fluorescent probe for hypochlorite detection and its application to live-cell imaging. Sens Actuators B 317:128213. https://doi.org/10.1016/j.snb.2020.128213

    Article  CAS  Google Scholar 

  45. Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W (2019) Coumarin-based small-molecule fluorescent chemosensors. Chem Rev 119:10403–10519. https://doi.org/10.2021/acs.chemrev.9b00145

    Article  CAS  PubMed  Google Scholar 

  46. Li J, Cui Y, Bi C, Feng S, Fengzhen Yu, Yuan En, Shengzhen Xu, Zhe Hu, Sun Qi, Wei D, Yoon J (2019) Oligo (ethylene glycol)-functionalized ratiometric fluorescent probe for the detection of hydrazine in vitro and in vivo. Anal Chem 91:7360–7365. https://doi.org/10.1021/acs.analchem.9b01223

    Article  CAS  PubMed  Google Scholar 

  47. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Science 306:1383–1386. https://doi.org/10.1126/science.1100747

    Article  CAS  PubMed  Google Scholar 

  48. Meng F, Niu J, Zhang H, Yang R, Qing Lu, Niu G, Liu Z, Xiaoqiang Yu (2021) A pH-sensitive spirocyclization strategy for constructing a single fluorescent probe simultaneous two-color visualizing of lipid droplets and lysosomes and monitoring of lipophagy. Anal Chem 93:11729–11735. https://doi.org/10.1021/acs.analchem.1c01842

    Article  CAS  PubMed  Google Scholar 

  49. Li XY, Yu ZY, Li N, Jia HS, Wei H, Wang J, Song YT (2019) Design and synthesis of dual-excitation fluorescent probe, Tb3+-dtpa-bis (fluorescein), and application in detection of hydrazine in environmental water samples and live cells. Dyes Pigm 162:281–294. https://doi.org/10.1016/j.dyepig.2018.10.044

    Article  CAS  Google Scholar 

  50. Wang N, Xu W, Song DQ, Ma PY (2020) A fluorescein-carbazole-based fluorescent probe for imaging of endogenous hypochlorite in living cells and zebrafish. Spectrochim Acta Part A 227:117692. https://doi.org/10.1016/j.saa.2019.117692

    Article  CAS  Google Scholar 

  51. Ji Y, Dai F, Zhou B (2019) Developing a julolidine-fluorescein-based hybrid as a highly sensitive fluorescent probe for sensing and bioimaging cysteine in living cells. Talanta 197:631–637. https://doi.org/10.1016/j.talanta.2019.01.084

    Article  CAS  PubMed  Google Scholar 

  52. Hou XF, Li ZS, Li BL, Liu CH, Xu ZH (2018) An “off-on” fluorescein-based colormetric and fluorescent probe for the detection of glutathione and cysteine over homocysteine and its application for cell imaging. Sens Actuators B 260:295–302. https://doi.org/10.1016/j.snb.2018.01.013

    Article  CAS  Google Scholar 

  53. Xu WZ, Liu WY, Zhou TT, Yang YT, Li W (2018) A novel fluorescein-based “turn-on” probe for the detection of hydrazine and its application in living cells. Spectrochim Acta Part A 193:324–329. https://doi.org/10.1016/j.saa.2017.12.040

    Article  CAS  Google Scholar 

  54. Yan FY, Fan KQ, Ma TC, Xu JX, Wang J, Ma C (2019) Synthesis and spectral analysis of fluorescent probes for Ce4+ and OCl ions based on fluorescein Schiff base with amino or hydrazine structure: application in actual water samples and biological imaging. Spectrochim Acta Part A 213:254–262. https://doi.org/10.1016/j.saa.2019.01.045

    Article  CAS  Google Scholar 

  55. Lv J, Chen YH, Wang F, Wei TW, Zhang ZJ, Qiang J, Chen XQ (2018) A mitochondria-targeted fluorescent probe based on fluorescein derivative for detection of hypochlorite in living cells. Dyes Pigm 148:353–358. https://doi.org/10.1016/j.dyepig.2017.09.037

    Article  CAS  Google Scholar 

  56. Zhou L, Cheng ZQ, Li N, Ge YX, Xie HX, Zhu KK, Zhou AQ, Zhang J, Wang KM, Jiang CS (2020) A highly sensitive endoplasmic reticulum-targeting fluorescent probe for the imaging of endogenous H2S in live cells. Spectrochim Acta Part A 240:118578. https://doi.org/10.1016/j.saa.2020.118578

    Article  CAS  Google Scholar 

  57. Jin XL, Wu XL, Wang B, Xie P, He YL, Zhou HW, Yan B, Yang JJ, Chen WX, Zhang XH (2018) A reversible fluorescent probe for Zn2+ and ATP in living cells and in vivo. Sens Actuators B 261:127–134. https://doi.org/10.1016/j.snb.2018.01.116

    Article  CAS  Google Scholar 

  58. Li CR, Li SL, Wang GQ, Yang ZY (2018) Spectroscopic properties of a chromone-fluorescein conjugate as Mg2+ “turn on” fluorescent probe. J Photochem Photobiol A 356:700–707. https://doi.org/10.1016/j.jphotochem.2016.03.001

    Article  CAS  Google Scholar 

  59. Kan C, Wu L, Shao X et al (2020) A new reversible fluorescent chemosensor based on rhodamine for rapid detection of Al (III) in natural environmental water samples and living organisms. Tetrahedron Lett 61:152407. https://doi.org/10.1016/j.tetlet.2020.152407

  60. Zhang X, Chen YN, Liu CY, Zhuang ZH, Li ZL, Jia P, Zhu HC, Yu YM, Zhu BC, Sheng WL (2019) A novel hexahydropyridazin-modified rhodamine fluorescent probe for tracing endogenous/exogenous peroxynitrite in live cells and zebrafish. Dyes Pigm 170:107573. https://doi.org/10.1016/j.dyepig.2019.107573

    Article  CAS  Google Scholar 

  61. Shen SL, Huang XQ, Jiang HL, Lin XH, Cao XQ (2019) A rhodamine B-based probe for the detection of HOCl in lysosomes. Anal Chim Acta 1046:185–191. https://doi.org/10.1016/j.aca.2018.09.054

    Article  CAS  PubMed  Google Scholar 

  62. Wang ZC, Zhang QH, Liu JW, Sui R, Li YH, Li Y, Zhang XF, Yu HB, Jing K, Zhang MY, Xiao Y (2019) A twist six-membered rhodamine-based fluorescent probe for hypochlorite detection in water and lysosomes of living cells. Anal Chim Acta 1082:116–125. https://doi.org/10.1016/j.aca.2019.07.046

    Article  CAS  PubMed  Google Scholar 

  63. Shellaiah M, Thirumalaivasan N, Aazaad B, Awasthi K, Sun KW, Wu SP, Lin MC, Ohta N (2020) Novel rhodamine probe for colorimetric and fluorescent detection of Fe3+ ions in aqueous media with cellular imaging. Spectrochim Acta Part A 242:118757. https://doi.org/10.1016/j.saa.2020.118757

    Article  CAS  Google Scholar 

  64. Li M-Y, Li K, Liu Y-H, Zhang H, Kang-Kang Yu, Liu X, Xiao-Qi Yu (2020) Mitochondria-immobilized fluorescent probe for the detection of hypochlorite in living cells, tissues, and zebrafishes. Anal Chem 92:3262–3269. https://doi.org/10.1021/acs.analchem.9b05102

    Article  CAS  PubMed  Google Scholar 

  65. Zhang J, Pan FC, Jin Y, Wang NN, He JL, Zhang WJ, Zhao WL (2018) A BODIPY-based dual-responsive turn-on fluorescent probe for NO and nitrite. Dyes Pigm 155:276–283. https://doi.org/10.1016/j.dyepig.2018.03.035

    Article  CAS  Google Scholar 

  66. Gao LX, Tian M, Zhang L, Liu Y, Jiang FL (2020) Syntheses, kinetics and thermodynamics of BODIPY-based fluorescent probes with different kinds of hydrophilic groups for the detection of biothiols. Dyes Pigm 180:108434. https://doi.org/10.1016/j.dyepig.2020.108434

    Article  CAS  Google Scholar 

  67. Wang NN, Chen M, Gao JH, Ji X, He JL, Zhang J, Zhao WL (2019) A series of BODIPY-based probes for the detection of cysteine and homocysteine in living cells. Talanta 195:281–289. https://doi.org/10.1016/j.talanta.2018.11.066

    Article  CAS  PubMed  Google Scholar 

  68. Li YY, Tang Y, Gao MM, Wang Y, Han J, Xia JC, Wang L, Tang X, Ni L (2018) A sensitive BODIPY-based fluorescent probe suitable for hypochlorite detection in living cells. J Photochem Photobiol A 352:65–72. https://doi.org/10.1016/j.jphotochem.2017.10.037

    Article  CAS  Google Scholar 

  69. Ji Y, Xia LJ, Chen L, Guo XF, Wang H, Zhang HJ (2018) A novel BODIPY-based fluorescent probe for selective detection of hydrogen sulfide in living cells and tissues. Talanta 181:104–111. https://doi.org/10.1016/j.talanta.2017.12.067

    Article  CAS  PubMed  Google Scholar 

  70. Shi WJ, Li CF, Huang Y, Tan HY, Wei YF, Liu FG, Feng LX, Zheng LY, Chen GS, Yan JW (2019) A remarkable colorimetric probe for fluorescent ratiometric and ON-OFF discriminative detection of Hg2+ and Cu2+ by double-channel imaging in living cells. Dyes Pigm 171:107782. https://doi.org/10.1016/j.dyepig.2019.107782

    Article  CAS  Google Scholar 

  71. Wang FF, Liu YJ, Wang BB, Gao LX, Jiang FL, Liu Y (2018) A BODIPY-based mitochondria-targeted turn-on fluorescent probe with dual response units for the rapid detection of intracellular biothiols. Dyes Pigm 152:29–35. https://doi.org/10.1016/j.dyepig.2018.01.023

    Article  CAS  Google Scholar 

  72. Chao JB, Wang XL, Liu YM, Zhang YB, Huo FJ, Yin CX, Zhao MG, Sun JY, Xu M (2018) A pyrene-thiophene based fluorescent probe for ratiometric sensing of bisulfite and its application in vivo imaging. Sens Actuators B 272:195–202. https://doi.org/10.1016/j.snb.2018.05.058

    Article  CAS  Google Scholar 

  73. Li NN, Bi CF, Zhang X, Xu CG, Fan CB, Gao WS, Zong ZA, Zuo SS, Niu CF, Fan YH (2020) A bifunctional probe based on naphthalene derivative for absorbance-ratiometic detection of Ag and fluorescence “turn-on” sensing of Zn and its practical application in water samples, walnut and living cells. J Photochem Photobiol A 390:112299. https://doi.org/10.1016/j.jphotochem.2019.112299

    Article  CAS  Google Scholar 

  74. Rohini G, Ramaiah K, Sreekanth A (2018) Naphthalene dianhydride based selective detection targetable fluorescent probe for monitoring exogenous Iron in living cells. Tetrahedron Lett 59:3858–3862. https://doi.org/10.1016/j.tetlet.2018.09.028

    Article  CAS  Google Scholar 

  75. Yuan WW, Zhong XL, Han QR, Jiang YL, Shen J, Wang BX (2020) A novel formaldehyde fluorescent probe based on 1, 8-naphthalimide derivative and its application in living cell. J Photochem Photobiol A 400:112701. https://doi.org/10.1016/j.jphotochem.2020.112701

    Article  CAS  Google Scholar 

  76. Zhang ZJ, Lv T, Tao BB, Wen ZF, Xu YQ, Li HJ, Liu FY, Sun SG (2020) A novel fluorescent probe based on naphthalimide for imaging nitroreductase (NTR) in bacteria and cells. Bioorg Med Chem 28:115280. https://doi.org/10.1016/j.bmc.2019.115280

    Article  CAS  PubMed  Google Scholar 

  77. Zhang YQ, Zhang L (2020) A novel “turn-on” fluorescent probe based on hydroxy functionalized naphthalimide as a logic platform for visual recognition of H2S in environment and living cells. Spectrochim Acta Part A 235:118331. https://doi.org/10.1016/j.saa.2020.118331

    Article  CAS  Google Scholar 

  78. Kong X, Li M, Dong B, Yin Y, Song W, Lin W (2019) An ultrasensitivity fluorescent probe based on the ICT-FRET dual mechanisms for imaging β-galactosidase in vitro and ex vivo. Anal Chem 91:15591–15598. https://doi.org/10.1021/acs.analchem.9b03639

    Article  CAS  PubMed  Google Scholar 

  79. Pak YL, Park SJ, Xu Q, Kim HM, Yoon J (2018) Ratiometric two-photon fluorescent probe for detecting and imaging hypochlorite. Anal Chem 90:9510–9514. https://doi.org/10.1021/acs.analchem.8b02195

    Article  CAS  PubMed  Google Scholar 

  80. Lee D, Lim CS, Ko G, Kim D, Cho MK, Nam SJ, Kim HM, Yoon J (2018) A two-photon fluorescent probe for imaging endogenous ONOO− near NMDA receptors in neuronal cells and hippocampal tissues. Anal Chem 90:9347–9352. https://doi.org/10.1021/acs.analchem.8b01960

    Article  CAS  PubMed  Google Scholar 

  81. Kwon N, Lim CS, Ko G, Ha J, Lee D, Yin J, Kim HM, Yoon J (2021) Fluorescence probe for imaging N-methyl-d-aspartate receptors and monitoring GSH selectively using two-photon microscopy. Anal Chem 93:11612–11616. https://doi.org/10.1021/acs.analchem.1c02350

    Article  CAS  PubMed  Google Scholar 

  82. Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Chem Commun 20:1740–1741. https://doi.org/10.1039/b105159h

    Article  Google Scholar 

  83. Hong Y, Lam JW, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388

    Article  CAS  Google Scholar 

  84. Mei J, Leung NL, Kwok RT, Lam JW, Tang BZ (2015) Aggregation-induced emission: together we shine, United We Soar! Chem Rev 2015(115):11718–11940. https://doi.org/10.2021/acs.chemrev.5b00263

    Article  Google Scholar 

  85. Ni JS, Liu H, Liu J, Jiang M, Zhao Z, Chen Y, Kwok RT, Lam JWY, Peng Q, Tang BZ (2018) Mater Chem Front 2:1498. https://doi.org/10.1039/c8qm00184g

    Article  CAS  Google Scholar 

  86. Zhang Y, Xu W, Kong L, Han B, Cai Z, Shi J, Tong B, Dong Y, Tang BZ (2018) Mater Chem Front 2:1779. https://doi.org/10.1039/c8qm00235e

    Article  CAS  Google Scholar 

  87. Naik VG, Hiremath SD, Das A, Banwari D, Gawas RU, Biswas M, Banerjee M, Chatterjee A (2018) Mater Chem Front 2:2091. https://doi.org/10.1039/c8qm00417j

    Article  CAS  Google Scholar 

  88. Li J, Kwon N, Jeong Y, Lee S, Kim G, Yoon J (2018) Aggregation-induced fluorescence probe for monitoring membrane potential changes in mitochondria. ACS Appl Mater Interfaces 10:12150–12154. https://doi.org/10.1021/acsami.7b14548

    Article  CAS  PubMed  Google Scholar 

  89. Zhang F, He Y, Jin X, Xiang S, Feng H-T, Li L-L, Luminogen G-C-I (2021) A pH-responsive fluorescence probe with tunable self- assembly morphologies for cell imaging. J Phys Chem B 125:10224–10231. https://doi.org/10.1021/acs.jpcb.1c06443

    Article  CAS  PubMed  Google Scholar 

  90. Li S-J, Zhou D-Y, Li Y, Liu H-W, Ping Wu, Ou-Yang J, Jiang W-L, Li C-Y (2018) Efficient two-photon fluorescent probe for imaging of nitric oxide during endoplasmic reticulum stress. ACS Sens 3:2311–2319. https://doi.org/10.1021/acssensors.8b00567

    Article  CAS  PubMed  Google Scholar 

  91. Huang S, Zou LY, Ren AM, Guo JF, Liu XT, Feng JK, Yang BZ (2013) Computational design of two-photon fluorescent probes for a zinc ion based on a Salen ligand. Inorg Chem 52:5702–5713. https://doi.org/10.1021/ic3022062

    Article  CAS  PubMed  Google Scholar 

  92. Murfin LC, Weber M, Park SJ, Kim WT, Lopez-Alled CM, McMullin CL, Pradaux-Caggiano F, Lyall CL, Kociok-Köhn G, Wenk J, Bull SD, Yoon J, Kim HM, James TD, Lewis SE (2019) Azulene-derived fluorescent probe for bioimaging: detection of reactive oxygen and nitrogen species by two-photon microscopy. J Am Chem Soc 141:19389–19396. https://doi.org/10.1021/jacs.9b09813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen J, Lu Y, Wu Y, Chen Z, Liu X, Zhang C, Sheng J, Li L, Chen W, Song X (2021) De novo design of a robust fluorescent probe for basal HClO imaging in a mouse Parkinson’s disease model. ACS Chem Neurosci 12:4058–4064. https://doi.org/10.1021/acschemneuro.1c00431

  94. Jin Y, Lv MH, Tao YF, Xu S, He JL, Zhang J, Zhao WL (2019) A water-soluble BODIPY-based fluorescent probe for rapid and selective detection of hypochlorous acid in living cells. Spectrochim Acta Part A 219:569–575. https://doi.org/10.1016/j.saa.2019.04.085

    Article  CAS  Google Scholar 

  95. Nie J, Yang DS, Tang XX, Zhang LF, Ni ZH, Gui XH (2019) A new pyrene-based tert-butylnitroxide radical “off-on” fluorescent probe for H2S detection in living cells. Dyes Pigm 170:107644. https://doi.org/10.1016/j.dyepig.2019.107644

    Article  CAS  Google Scholar 

  96. Zhang D, Liu DM, Li M, Yang YQ, Wang Y, Yin HY, Liu JH, Jia B, Wu XJ (2018) A simple pyrene-based fluorescent probe for highly selective detection of formaldehyde and its application in live-cell imaging. Anal Chim Acta 1033:180–184. https://doi.org/10.1016/j.aca.2018.05.065

    Article  CAS  PubMed  Google Scholar 

  97. Wang CY, Xu JH, Ma QJ, Bai Y, Tian MJ, Sun JG, Zhang ZJ (2020) A highly selective fluorescent probe for hydrogen polysulfides in living cells based on a naphthalene derivative. Spectrochim Acta Part A 227:117579. https://doi.org/10.1016/j.saa.2019.117579

    Article  CAS  Google Scholar 

  98. Zhao L, Zhou HX, Zhou QH, Peng C, Cheng TY, Liu GH (2020) Biomimetic fluorescent probe for chiral glutamic acid in water and its application in living cell imaging. Sens Actuators B 320:128383. https://doi.org/10.1016/j.snb.2020.128383

    Article  CAS  Google Scholar 

  99. Chao JB, Song KL, Zhang YB, Yin CX, Huo FJ, Wang JJ, Zhang T (2018) A pyrene-based colorimetric and fluorescent pH probe with large stokes shift and its application in bioimaging. Talanta 189:150–156. https://doi.org/10.1016/j.talanta.2018.06.073

    Article  CAS  PubMed  Google Scholar 

  100. Lee D, Swamy KMK, Hong J, Lee S, Yoon J (2018) A rhodamine-based fluorescent probe for the detection of lysosomal pH changes in living cells. Sens Actuators B 266:416–421. https://doi.org/10.1016/j.snb.2018.03.133

    Article  CAS  Google Scholar 

  101. Liu F, Yan JR, Chen S, Yan GP, Pan BQ, Zhang Q, Wang YF, Gu YT (2020) Polypeptide-rhodamine B probes containing laminin/fibronectin receptor-targeting sequence (YIGSR/RGD) for fluorescent imaging in cancers. Talanta 212:120718. https://doi.org/10.1016/j.talanta.2020.120718

    Article  CAS  PubMed  Google Scholar 

  102. Swamy KMK, Eom S, Liu YF, Kim G, Lee D, Yoon J (2019) Rhodamine derivatives bearing thiourea groups serve as fluorescent probes for selective detection of ATP in mitochondria and lysosomes. Sens Actuators B 281:350–358. https://doi.org/10.1016/j.snb.2018.10.135

    Article  CAS  Google Scholar 

  103. Narode YM, Mokashi VM, Sharma GK (2018) Rhodamine 6G capped gold nanoparticles: a fluorescent probe for monitoring the radiation induced oxidation of Glutathione. J Lumin 201:479–484. https://doi.org/10.1016/j.jlumin.2018.05.011

    Article  CAS  Google Scholar 

  104. Zhang Y, Rong Q, Zhao J, Zhang J, Zhu Z, Liu Q (2018) Boron-doped graphene quantum dot/Ag−LaFeO3 p−p heterojunctions for sensitive and selective benzene detection. J Mater Chem A 6:12647–12653. https://doi.org/10.1039/c8ta03425g

    Article  CAS  Google Scholar 

  105. Chauhan N, Maekawa T, Kumar DNS (2017) Graphene based biosensors-accelerating medical diagnostics to new-dimensions. J Mater Res 32:2860–2882. https://doi.org/10.1557/jmr.2017.91

    Article  CAS  Google Scholar 

  106. Gong L, Sun Ji, Zheng P, Liu Y, Yang G (2021) Yellow fluorescent nitrogen and bromine co-doped graphene quantum dots for bioimaging. ACS Appl Nano Mater 4:8564–8571. https://doi.org/10.1021/acsanm.1c02004

    Article  CAS  Google Scholar 

  107. Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115:10575–10636. https://doi.org/10.1021/acs.chemrev.5b00100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xiang Wu, Zhang Y, Takle K, Bilsel O, Li Z, Lee H, Zhang Z, Li D, Fan W, Duan C, Chan EM, Lois C, Xiang Y, Han G (2016) Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10:1060–1066. https://doi.org/10.1021/acsnano.5b06383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Butler KS, Pearce CJ, Nail EA, Vincent GA, Dorina F, Gallis S (2020) Antibody targeted metal−organic frameworks for bioimaging applications. ACS Appl Mater Interfaces 12:31217–31224. https://doi.org/10.1021/acsami.0c07835

    Article  CAS  PubMed  Google Scholar 

  110. Li M, Chen T, Gooding JJ, Liu J (2019) Review of carbon and graphene quantum dots for sensing. ACS Sens 4:1732–1748. https://doi.org/10.1021/acssensors.9b00514

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, No. 82173742), the Shaanxi Science Fund for Distinguished Young Scholars (No. 2022JC-54), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2020SF-240), and Sanming Project of Medicine in Shenzhen (No. SZZYSM202106004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Lu or Jie Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, Q., Pan, X. et al. Development and Challenge of Fluorescent Probes for Bioimaging Applications: From Visualization to Diagnosis. Top Curr Chem (Z) 380, 22 (2022). https://doi.org/10.1007/s41061-022-00376-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00376-8

Keywords

Navigation