Skip to main content
Log in

Interactive Fluorophore and Quencher Pairs for Labeling Fluorescent Nucleic Acid Hybridization Probes

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The use of fluorescent nucleic acid hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. Real-time nucleic acid amplification assays markedly improves the ability to obtain qualitative and quantitative results. Furthermore, these assays can be carried out in sealed tubes, eliminating carryover contamination. Fluorescent nucleic acid hybridization probes are available in a wide range of different fluorophore and quencher pairs. Multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. In order to develop robust, highly sensitive and specific real-time nucleic acid amplification assays it is important to carefully select the fluorophore and quencher labels of hybridization probes. Selection criteria are based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This article provides an overview of different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Förster, T. (1948). Intermolecular energy migration and fluorescence. Annalen der Physik (Leipzig), 2, 55–75. Translated by R. S. Knox.

    Article  Google Scholar 

  2. Haugland, R. P., Yguerabide, J., & Stryer, L. (1969). Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap. Proceedings of the National Academy of Sciences of the United States of America, 63, 23–30.

    Article  PubMed  CAS  Google Scholar 

  3. Higuchi, R., Fockler, C., Dollinger, G., & Watson, R. (1993). Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Biotechnology (N Y), 11, 1026–1030.

    Article  CAS  Google Scholar 

  4. Wittwer, C. T., Herrmann, M. G., Moss, A. A., & Rasmussen, R. P. (1997). Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques, 22, 130–131.

    Article  PubMed  CAS  Google Scholar 

  5. Nazarenko, I. A., Bhatnagar, S. K., & Hohman, R. J. (1997). A closed tube format for amplification and detection of DNA based on energy transfer. Nucleic Acids Research, 25, 2516–2521.

    Article  PubMed  CAS  Google Scholar 

  6. Kandimalla, E. R., & Agrawal, S. (2000). “Cyclicons” as hybridization-based fluorescent primer-probes: Synthesis, properties and application in real-time PCR. Bioorganic & Medicinal Chemistry, 8, 1911–1916.

    Article  CAS  Google Scholar 

  7. Solinas, A., Brown, L. J., McKeen, C., Mellor, J. M., Nicol, J., Thelwell, N., et al. (2001). Duplex Scorpion primers in SNP analysis and FRET applications. Nucleic Acids Research, 29, E96.

    Article  PubMed  CAS  Google Scholar 

  8. French, D. J., Archard, C. L., Brown, T., & McDowell, D. G. (2001). HyBeacon™ probes: A new tool for DNA sequence detection and allele discrimination. Molecular and Cellular Probes, 15, 363–374.

    Article  PubMed  CAS  Google Scholar 

  9. Kutyavin, I. V., Afonina, I. A., Mills, A., Gorn, V. V., Lukhtanov, E. A., Belousov, E. S., et al. (2000). 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Research, 28, 655–661.

    Article  PubMed  CAS  Google Scholar 

  10. Tyagi, S., & Kramer, F. R. (1996). Molecular beacons: Probes that fluoresce upon hybridization. Nature Biotechnology, 14, 303–308.

    Article  PubMed  CAS  Google Scholar 

  11. Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W., & Deetz, K. (1995). Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods and Applications, 4, 357–362.

    PubMed  CAS  Google Scholar 

  12. Satterfield, B. C., West, J. A., & Caplan, M. R. (2007). Tentacle probes: Eliminating false positives without sacrificing sensitivity. Nucleic Acids Research, 35, e76.

    Article  PubMed  CAS  Google Scholar 

  13. Nutiu, R., & Li, Y. (2002). Tripartite molecular beacons. Nucleic Acids Research, 30, e94.

    Article  PubMed  Google Scholar 

  14. Whitcombe, D., Theaker, J., Guy, S. P., Brown, T., & Little, S. (1999). Detection of PCR products using self-probing amplicons and fluorescence. Nature Biotechnology, 17, 804–807.

    Article  PubMed  CAS  Google Scholar 

  15. Morrison, L. E., Halder, T. C., & Stols, L. M. (1989). Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization. Analytical Biochemistry, 183, 231–244.

    Article  PubMed  CAS  Google Scholar 

  16. Li, Q., Luan, G., Guo, Q., & Liang, J. (2002). A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Research, 30, E5.

    Article  PubMed  Google Scholar 

  17. Sando, S., & Kool, E. T. (2002). Quencher as leaving group: Efficient detection of DNA-joining reactions. Journal of the American Chemical Society, 124, 2096–2097.

    Article  PubMed  CAS  Google Scholar 

  18. Tyagi, S., Marras, S. A., & Kramer, F. R. (2000). Wavelength-shifting molecular beacons. Nature Biotechnology, 18, 1191–1196.

    Article  PubMed  CAS  Google Scholar 

  19. Marras, S. A., Kramer, F. R., & Tyagi, S. (2002). Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Research, 30, e122.

    Article  PubMed  Google Scholar 

  20. Marras, S. A. (2006). Selection of fluorophore and quencher pairs for fluorescent nucleic acid hybridization probes. Methods in Molecular Biology, 335, 3–16.

    PubMed  CAS  Google Scholar 

  21. Vargas, D. Y., Raj, A., Marras, S. A., Kramer, F. R., & Tyagi, S. (2005). Mechanism of mRNA transport in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 102, 17008–17013.

    Article  PubMed  CAS  Google Scholar 

  22. Seidel, C. A. M., Schulz, A., & Sauer, M. M. H. (1996). Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. The Journal of Physical Chemistry, 100, 5541–5553.

    Article  CAS  Google Scholar 

  23. Johansson, M. K., Fidder, H., Dick, D., & Cook, R. M. (2002). Intramolecular dimers: A new strategy to fluorescence quenching in dual-labeled oligonucleotide probes. Journal of the American Chemical Society, 124, 6950–6956.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The studies on the measurements of quenching efficiencies in fluorescent hybridization probes described in this article are the result of a long-time collaboration with Drs. Fred Russell Kramer and Sanjay Tyagi, and was supported by National Institutes of Health Grant EB-000277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore A. E. Marras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marras, S.A.E. Interactive Fluorophore and Quencher Pairs for Labeling Fluorescent Nucleic Acid Hybridization Probes. Mol Biotechnol 38, 247–255 (2008). https://doi.org/10.1007/s12033-007-9012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-9012-9

Keywords

Navigation