Skip to main content
Log in

A High-Density Genetic Map Constructed for Maize (Zea mays L.) Based on Large-Scale SNP Discovery Using Whole-Genome Resequencing and Specific-Locus Amplified Fragments Sequencing (SLAF-Seq)

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Maize is an important food and industrial material resource. We constructed a high-density genetic map using the whole-genome resequencing and specific-locus amplified fragments sequencing (SLAF-seq) techniques for the “HZS” and “X224M” elite maize inbred lines, and 196 F2 individuals from a cross between “HZS” and “X224M.” In our study, the average resequencing depth of the maternal and paternal parents was 13.30-fold and 11.94-fold, respectively. In the F2 population, the sequencing depth ranged from 9.64-fold to 45.16-fold with an average of 23.18-fold. In total, 12, 354, 021 SNPs were detected in the F2 population, and 87.78% of which were polymorphic. Among these SNPs, 2, 843, 917 (53.96%) were included in the segregation pattern aa × bb. Finally, 6, 186 SNPs were used to construct a high-density genetic map. The length of this map included all 10 chromosomes in maize and was 1, 667.36 cM, with an average distance of 0.318 cM between markers. The number of mapped SNPs in different linkage groups (LGs) ranged from 254 to 960, and the genetic distance of each LGs ranged from 157.22 to 192.72 cM. Based on the evaluation of haplotype and heat maps, the results indicated that our genetic map is of high quality, and we now have more detailed information for gene mapping and marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Ji, G., Zhang, Q., Du, R., et al., Construction of a high-density genetic map using specific-locus amplified fragments in sorghum, BMC Genomics, 2017, vol. 18, p. 51.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zuo, W., Chao, Q., Zhang, N., et al., A maize wall-associated kinase confers quantitative resistance to head smut, Nat. Genet., 2015, vol. 47, pp. 151—157.

    Article  PubMed  CAS  Google Scholar 

  3. Hake, S. and Ross-Ibarra, J., Genetic, evolutionary and plant breeding insights from the domestication of maize, Elife, 2015, vol. 4.

  4. Zhang, J., Yuan, H., Li, M., et al., A high-density genetic map of tetraploid Salix matsudana using specific length amplified fragment sequencing (SLAF-seq), PLoS One, 2016, vol. 11, p. e0157777.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen, L., Li, C., Li, Y., et al., Quantitative trait loci mapping of yield and related traits using a high-density genetic map of maize, Mol. Breed., 2016, vol. 36, p. 134.

  6. Chen, Z., Wang, B., Dong, X., et al., An ultra-high-density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population, BMC Genomics, 2014, vol. 15, p. 433.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tsonev, S., Todorovska, E., Avramova, V., et al., Genomics assisted improvement of drought tolerance in maize: QTL approaches, Biotechnol. Biotechnol. Equip., 2009, vol. 23, pp. 1410—1413.

    Article  CAS  Google Scholar 

  8. Zhou, Z., Zhang, C., Zhou, Y., et al., Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines, BMC Genomics, 2016, vol. 17, p. 178.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Helentjaris, T., Slocum, M., Wright, S., et al., Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms, Theor. Appl. Genet., 1986, vol. 72, pp. 761—769.

    Article  PubMed  CAS  Google Scholar 

  10. Senior, M.L., Chin, E.C.L., Lee, M., et al., Simple sequence repeat markers developed from maize sequences found in the GENBANK database: map construction, Crop Sci., 1996, vol. 36, pp. 1676—1683.

    Article  CAS  Google Scholar 

  11. Vuylsteke, M., Mank, R., Antonise, R., et al., Two high-density AFLP® linkage maps of Zea mays L.: analysis of distribution of AFLP markers, Theor. Appl. Genet., 1999, vol. 99, pp. 921—935.

    Article  CAS  Google Scholar 

  12. Davis, G.L., Mcmullen, M.D., Baysdorfer, C., et al., A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map, Genetics, 1999, vol. 152, pp. 1137—1172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lee, M., Sharopova, N., Beavis, W.D., et al., Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population, Plant Mol. Biol., 2002, vol. 48, pp. 453—461.

    Article  PubMed  CAS  Google Scholar 

  14. Orsouw, N.J.V., Janssen, A., Yalcin, F., et al., Complexity reduction of polymorphic sequences (CRoPS™): a novel approach for large-scale polymorphism discovery in complex genomes, PLoS One, 2007, vol. 2, p. e1172.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baird, N.A., Etter, P.D., Atwood, T.S., et al., Rapid SNP discovery and genetic mapping using sequenced RAD markers, PLoS One, 2008, vol. 3, p. e3376.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Elshire, R.J., Glaubitz, J.C., Sun, Q., et al., A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species, PLoS One, 2011, vol. 6, p. e19379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kumar, S., Banks, T.W., and Cloutier, S., SNP discovery through next-generation sequencing and its applications, Int. J. Plant Genomics, 2012, vol. 2012, p. 831460.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bai, H., Cao, Y., Quan, J., et al., Identifying the genome-wide sequence variations and developing new molecular markers for genetics research by re-sequencing a landrace cultivar of foxtail millet, PLoS One, 2013, vol. 8, p. e73514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ma, J.Q., Huang, L., Ma, C.L., et al., Large-scale SNP discovery and genotyping for constructing a high-density genetic map of tea plant using specific-locus amplified fragment sequencing (SLAF-seq), PLoS One, 2015, vol. 10, p. e0128798.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Qi, Z., Huang, L., Zhu, R., et al., A high-density genetic map for soybean based on specific length amplified fragment sequencing, PLoS One, 2014, vol. 9, p. e104871.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu, X., Xu, R., Zhu, B., et al., A high-density genetic map of cucumber derived from specific length amplified fragment sequencing (SLAF-seq), Front Plant Sci., 2014, vol. 5, p. 768.

    PubMed  Google Scholar 

  22. Zhang, Y., Wang, L., Xin, H., et al., Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing, BMC Plant Biol., 2013, vol. 13, p. 141.

  23. Huang, X., Feng, Q., Qian, Q., et al., High-throughput genotyping by whole-genome resequencing, Genome Res., 2009, vol. 19, pp. 1068—1076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Huang, X., Wei, X., Sang, T., et al., Genome-wide association studies of 14 agronomic traits in rice landraces, Nat. Genet., 2010, vol. 42, pp. 961—967.

    Article  PubMed  CAS  Google Scholar 

  25. Guo, L., Gao, Z., and Qian, Q., Application of resequencing to rice genomics, functional genomics and evolutionary analysis, Rice (New York), 2014, vol. 7, p. 4.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu, L.I. and Wang, T.Y., Germplasm base of maize breeding in China and formation of foundation parents, J. Maize Sci., 2010.

  27. Sun, X., Liu, D., Zhang, X., et al., SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing, PLoS One, 2013, vol. 8, p. e58700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Doyle, J., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull., 1987, vol. 19, pp. 11—15.

    Google Scholar 

  29. Doyle, J., Isolation of plant DNA from fresh tissue, Focus (Madison), 1990, vol. 12, pp. 13—15.

    Google Scholar 

  30. Li, R., Li, Y., Kristiansen, K., and Wang, J., SOAP: short oligonucleotide alignment program, Bioinformatics, 2008, vol. 24, pp. 713—714.

    Article  PubMed  CAS  Google Scholar 

  31. Chia, J.M., Song, C., Bradbury, P.J., et al., Maize HapMap2 identifies extant variation from a genome in flux, Nat. Genet., 2012, vol. 44, pp. 803—807.

    Article  PubMed  CAS  Google Scholar 

  32. Kozich, J.J., Westcott, S.L., Baxter, N.T., et al., Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform, Appl. Environ. Microbiol., 2013, vol. 79, pp. 5112—5120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Liu, D., Ma, C., Hong, W., et al., Construction and analysis of high-density linkage map using high-throughput sequencing data, PLoS One, 2014, vol. 9, p. e98855.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Van Ooijen, J.W., Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species, Genet. Res., 2011, vol. 93, pp. 343—349.

    Article  CAS  Google Scholar 

  35. Jansen, J., Jong, A.G.D., and Ooijen, J.W.V., Constructing dense genetic linkage maps, Theor. Appl. Genet., 2001, vol. 102, pp. 1113—1122.

    Article  CAS  Google Scholar 

  36. van Os, H., Stam, P., Visser, R.G., and van Eck, H.J., SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data, Theor. Appl. Genet., 2005, vol. 112, pp. 187—194.

    Article  PubMed  Google Scholar 

  37. Huang, X., Zhao, Y., Wei, X., Li, C., et al., Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm, Nat. Genet., 2011, vol. 44, p. 32.

    Article  PubMed  CAS  Google Scholar 

  38. The Estimation of Map Distances from Recombination Values, Kosambi, D.D., Ed., Springer-Verlag, 2016.

    Google Scholar 

  39. Michaels, S.D. and Amasino, R.M., A robust method for detecting single-nucleotide changes as polymorphic markers by PCR, Plant J., 1998, vol. 14, pp. 381—385.

    Article  PubMed  CAS  Google Scholar 

  40. Neff, M.M., Turk, E., and Kalishman, M., Web-based primer design for single nucleotide polymorphism analysis, Trends Genet., 2002, vol. 18, pp. 613—615.

    Article  PubMed  CAS  Google Scholar 

  41. Sim, S.C., Durstewitz, G., Plieske, J., et al., Development of a large SNP genotyping array and generation of high-density genetic maps in tomato, PLoS One, 2012, vol. 7, p. e40563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Graham I.A., Besser K., Blumer S., et al., The genetic map of Artemisia annua L. identifies loci affecting yield of the Graham, I.A., Besser, K., Blumer, S., et al., antimalarial drug artemisinin, Science, 2010, vol. 327, pp. 328—331.

    Article  PubMed  CAS  Google Scholar 

  43. Wang, S., Zhang, L., Meyer, E., and Matz, M.V., Construction of a high-resolution genetic linkage map and comparative genome analysis for the reef-building coral Acropora millepora, Genome Biol., 2009, vol. 10, p. R126.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Beavis, W.D. and Grant, D., A linkage map based on information from four F2 populations of maize (Zea mays L.), Theor. Appl. Genet., 1991, vol. 82, pp. 636—644.

    Article  PubMed  CAS  Google Scholar 

  45. Castiglioni, P., Ajmone-Marsan, P., Van, W.R., and Motto, M., AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution, Theor. Appl. Genet., 1999, vol. 99, p. 425.

    Article  PubMed  CAS  Google Scholar 

  46. Remington, D.L., Thornsberry, J.M., Matsuoka, Y., et al., Structure of linkage disequilibrium and phenotypic associations in the maize genome, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 11479—11484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Van, I.D., Melchinger, A.E., Lebreton, C., and Stich, B., Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers, Theor. Appl. Genet., 2010, vol. 120, p. 1289.

    Article  Google Scholar 

  48. Su, C., Wang, W., Gong, S., et al., High density linkage map construction and mapping of yield trait QTLs in maize (Zea mays) using the genotyping-by-sequencing (GBS) technology, Front. Plant Sci., 2017, vol. 8.

  49. Ganal, M.W., Altmann, T., and Röder, M.S., SNP identification in crop plants, Curr. Opin. Plant Biol., 2009, vol. 12, pp. 211—217.

    Article  PubMed  CAS  Google Scholar 

  50. Liu, H., Cao, F., Yin, T., and Chen, Y., A highly dense genetic map for Ginkgo biloba constructed using sequence-based markers, Front. Plant Sci., 2017, vol. 8, p. 1041.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ahn, S. and Tanksley, S.D., Comparative linkage maps of the rice and maize genomes, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, pp. 7980—7984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Helentjaris, T., A genetic linkage map for maize based on RFLPs, Trends Genet., 1987, vol. 3, pp. 217—221.

    Article  CAS  Google Scholar 

  53. Liu, C., Zhou, Q., Dong, L., et al., Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing, BMC Genomics, 2016, vol. 17, p. 915.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sharopova, N., McMullen, M.D., Schultz, L., et al., Development and mapping of SSR markers for maize, Plant Mol. Biol., 2002, vol. 48, pp. 463—481.

    Article  PubMed  CAS  Google Scholar 

  55. Stich, B., Melchinger, A.E., Frisch, M., et al., Linkage disequilibrium in European elite maize germplasm investigated with SSRs, Theor. Appl. Genet., 2005, vol. 111, pp. 723—730.

    Article  PubMed  Google Scholar 

  56. Yan, J., Yang, X., Shah, T., et al., High-throughput SNP genotyping with the Golden Gate assay in maize, Mol. Breed., 2010, vol. 25, pp. 441—451.

    Article  CAS  Google Scholar 

  57. Song, W., Wang, B., Hauck, A.L., et al., Genetic dissection of maize seedling root system architecture traits using an ultra-high-density bin-map and a recombinant inbred line population, J. Integr. Plant Biol., 2016, vol. 58, pp. 266—279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Li, H., Kilian, A., Zhou, M., Wenzl, P., et al., Construction of a high-density composite map and comparative mapping of segregation distortion regions in barley, Mol. Genet. Genomics, 2010, vol. 284, pp. 319—331.

    Article  PubMed  CAS  Google Scholar 

  59. Tai, G., Jea, S., and Aziz, A.N., Linkage analysis of anther-derived monoploids showing distorted segregation of molecular markers, Theor. Appl. Genet., 2000, vol. 101, pp. 126—130.

    Article  CAS  Google Scholar 

  60. Menz, M.A., Klein, R.R., Mullet, J.E., et al., A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers, Plant Mol. Biol., 2002, vol. 48, pp. 483—499.

    Article  PubMed  CAS  Google Scholar 

  61. Mace, E.S., Rami, J.F., Bouchet, S., et al., A consensus genetic map of sorghum that integrates multiple component maps and high-throughput diversity array technology (DArT) markers, BMC Plant Biol., 2009, vol. 9, p. 13.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Alheit, K.V., Reif, J.C., Maurer, H.P., et al., Detection of segregation distortion loci in triticale (× Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map, BMC Genomics, 2011, vol. 12, p. 380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Liu, X., You, J., Guo, L., and Liu, X., Genetic analysis of segregation distortion of SSR markers in F2 population of barley, J. Agric. Sci., 2011, vol. 3.

  64. Xu, S. and Hu, Z., Mapping quantitative trait loci using distorted markers, Int. J. Plant Genomics, 2009, vol. 2009, p. 410825.

    Article  PubMed  Google Scholar 

  65. Zhang, L., Wang, S., Li, H., et al., Effects of missing marker and segregation distortion on QTL mapping in F2 populations, Theor. Appl. Genet., 2010, vol. 121, pp. 1071—1082.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the grants from National Natural Science Foundation of China (no. 31501273), the Chongqing Research Program of Basic Research and Frontier Technology (nos. cstc2015jcyjA80003, cstc2015jcyjA80004).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-P. Du.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Table S1. Information of the dCAPS markers developed for PCR genotyping validation

Table S2. The DNA sequence of the sequence-associated markers on the linkage map

Table S3. Spearman’s correlation of the genotyping results between dCAPs and SNPs

11177_2024_1861_MOESM1_ESM.docx

11177_2024_1861_MOESM2_ESM.docx

11177_2024_1861_MOESM3_ESM.xlsx

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Song, J., Nie, Z. et al. A High-Density Genetic Map Constructed for Maize (Zea mays L.) Based on Large-Scale SNP Discovery Using Whole-Genome Resequencing and Specific-Locus Amplified Fragments Sequencing (SLAF-Seq). Russ J Genet 59 (Suppl 2), S123–S134 (2023). https://doi.org/10.1134/S1022795423140107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423140107

Keywords:

Navigation