Skip to main content
Log in

Advanced Biotechnologies: Collections of Plant Cell Cultures As a Basis for Development and Production of Medicinal Preparations

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The review examines the principles in formation of cell culture and tissue collections of higher plants in vitro as a variant of genetic collections, the modern state and perspective of using collections in studies of the peculiarities and patterns of synthesis of biologically active substances of higher plants, the important role of collections in biotechnological production of substances for medicinal preparations, and methods for maintaining the stability of cell cultures during long-term cultivation. Particular attention is paid to the retrospective and current state of the All-Russia Collection of Cell Cultures of Higher Plants, the founder of which was Russian Academy of Sciences Corresponding Member R.G. Butenko.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture, Rome: UN Food Agric. Org., 2010.

  2. Pritchard, H.W., Cryopreservation of desiccation-tolerant seeds, in Cryopreservation and Freeze-Drying Protocols, Day, J.G. and Stacey, G.N., Eds., Totowa, NJ: Humana, 2007, p. 185.

    Google Scholar 

  3. Asdal, A. and Guarino, L., The Svalbard Global seed vault: 10 years—1 million samples, Biopreserv. Biobanking, 2018, p. 391. https://doi.org/10.1089/bio.2018.0025

  4. Benson, E.E., Harding, K., Debouck, D., Dumet, D., Escobar, R., Mafla, G., Panis, B., Panta, A., Tay, D., van den Houwe, I., and Roux, N., Refinement and Standardization of Storage Procedures for Clonal Crops. Global Public Goods Phase 2: Part 1. Project Landscape and General Status of Clonal Crop in Vitro Conservation Technologies, Rome: System-Wide Genet. Resour. Progr., 2011.

    Google Scholar 

  5. Pence, V.C., Cryopreservation of seeds of Ohio native plants and related species, Seed Sci. Technol., 1991, vol. 19, p. 235.

    Google Scholar 

  6. Reed, B.M., Plant cryopreservation: a continuing requirement for food and ecosystem security, In Vitro Cell. Dev. Biol.: Plant, 2017, vol. 53, p. 285.

    Article  CAS  Google Scholar 

  7. Pritchard, H.W., Nadarajan, J., Ballesteros, D., Thammasiri, K., Prasongsom, S., Malik, S.K., Chaudhury, R., Kim, H.-H., Lin, L., Li, W.-Q., Yang, X.-Y., and Popova, E., Cryobiotechnology of tropical seeds—scale, scope and hope, Acta Hortic., 2017, vol. 1167, p. 37. https://doi.org/10.17660/ActaHortic.2017.1167.6

  8. Acker, J.P., Adkins, S., Alves, A., Horna, D., and Toll, J., Feasibility Study for a Safety Back-Up Cryopreservation Facility. Independent Expert Report: July 2017, Rome: Bioversity Int., 2017.

    Google Scholar 

  9. BGCI, 2020. https://www.bgci.org/resources/bgci-databases/gardensearch/. Accessed August 20, 2020.

  10. Fu, Y.B., The vulnerability of plant genetic resources conserved ex situ, Crop Sci., 2017, vol. 57, p. 2314.

    Article  Google Scholar 

  11. Popov, A.S., Popova, E.V., Nikishina, T.V., and Vysotskaya, O.N., Cryobank of plant genetic resources in Russian Academy of Sciences, Int. J. Refrig., 2006, vol. 29, p. 403. https://doi.org/10.1016/j.ijrefrig.2005.07.011

    Article  CAS  Google Scholar 

  12. Popova, E.V., Shukla, M., Kim, H.H., and Saxena, P.K., Plant cryopreservation for biotechnology and breeding, in Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools, Al-Khairy, J.M., Jain, M., and Johnson, D.V., Eds., New York: Springer-Verlag, 2015, p. 63.

    Google Scholar 

  13. Thorpe, T.A., History of plant tissue culture, in Methods in Molecular Biology. Plant Cell Culture Protocols, Loyola-Vargas, V.M. and Vázquez-Flota, F., Eds., 2nd ed., Totowa, NJ: Humana, 2006, p. 9.

    Google Scholar 

  14. Vasil, I.K., A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops, Plant Cell Rep., 2008, vol. 27, p. 1423.

    Article  CAS  PubMed  Google Scholar 

  15. Sussex, I.M., The scientific roots of modern plant biotechnology, Plant Cell, 2008, vol. 20, p. 1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vöchting, H., Über Organbildung Im Pflanzenreich, Physiologische Untersuchungen Über Wachsthumsursachen Und Lebenseinheiten, Bonn: Verlag von Max Cohen, 1878, vol. 1.

    Google Scholar 

  17. Vöchting, H., Über die Regeneration der Marchantieen, Jahrb. Wiss. Bot., 1885, vol. 16, p. 367.

    Google Scholar 

  18. Haberlandt, G., Experiments on the culture of isolated plant cells, Bot. Rev., 1969, vol. 35, p. 68.

    Article  Google Scholar 

  19. Gautheret, R.J., Sur la possibilité de réaliser la culture indéfinie des tissus de tubercules de carrote, C. R. Hebd. Seances Acad. Sci., 1939, vol. 208, p. 118.

    Google Scholar 

  20. Nobécourt, P., Sur la pérennité et l’augmentation de volume des cultures de tissus végétaux, C. R. Seances Soc. Biol. Ses Fil., 1939, vol. 130, p. 1270.

    Google Scholar 

  21. White, P.R., Potentially unlimited growth of excised plant callus in an artificial nutrient, Am. J. Bot., 1939, vol. 26, p. 59.

    Article  Google Scholar 

  22. Miller, C.O., Skoog, F., von Saltza, M.H., and Strong, F.M., Kinetin, a cell division factor from deoxyribonucleic acid, J. Am. Chem. Soc., 1955, vol. 77, p. 1392.

    Article  CAS  Google Scholar 

  23. Gautheret, R.J., La Culture des Tissus Végétaux. Techniques et Réalisations, Paris: Masson et Cie, 1959.

    Google Scholar 

  24. Butenko, R.G., Kul’tura izolirovannykh tkanei i fiziologiya morfogeneza rastenii (Plant Tissue Culture and Plant Morphogenesis), Moscow: Nauka, 1964.

  25. Butenko, R.G., The tissue culture of medical plants and its possible use in pharmacy, Vopr. Farmakognoz., 1967, vol. 21, p. 184.

    Google Scholar 

  26. Butenko, R.G., Plant Tissue Culture and Plant Morphogenesis, Jerusalem: Israel Progr. Sci. Transl., 1968.

  27. Slepyan, L.I., Grushevitskii, I.V., and Butenko, R.G., Ginseng as an object for introduction into tissue culture in vitro, Vopr. Farmakognoz., 1967, vol. 21, p. 198.

    Google Scholar 

  28. Butenko, R.G., Grushevitskii, I.V., and Slepyan, L.I., Organogenesis and somatic embryogenesis in tissue culture of ginseng and other members of genus Panax L., Bot. Zh., 1968, vol. 53, p. 906.

    Google Scholar 

  29. Pinaev, G.P. and Polyanskaya, G.G., Creation and development of the Russian collection of human, animal and plant cell cultures, Kletochnye Kul’t., 2010, vol. 61, no. 26, p. 3.

    Google Scholar 

  30. Nosov, A.M., Plant cell culture: unique system, model, and tool, Russ. J. Plant Physiol., 1999, vol. 46, no. 6, p. 731.

    CAS  Google Scholar 

  31. Zenk, M.H., The impact of plant cell culture on industry, in Frontiers of Plant Tissue Culture, Thorpe, T.A., Ed., Calgary: Int. Assoc. Plant Tissue Cult., Univ. Calgary Print. Serv., 1978, p. 1.

    Google Scholar 

  32. Titova, M.V., Khandy, M.T., Konstantinova, S.V., Kulichenko, I.E., Sukhanova, E.S., Kochkin, D.V., and Nosov, A.M., Effect of iinhibitors of two isoprenoid biosynthetic pathways on physiological and biosynthetic characteristics of Dioscorea deltoidea cell suspension culture, Russ. J. Plant Physiol., 2016, vol. 63, p. 894.

    Article  CAS  Google Scholar 

  33. Kochkin, D.V., Khandy, M.T., Zaitsev, G.P., Tolkacheva, N.V., Shashkov, A.S., Titova, M.V., Chirva, V.Ya., and Nosov, A.M., Protodioscin in Dioscorea deltoidea suspension cell culture, Khim. Prirod. Soedin., 2016, vol. 4, p. 572.

    Google Scholar 

  34. Kochkin, D.V., Globa, E.B., Demidova, E.V., Gaisinsky, V.V., Galishev, B.A., Kolotyrkina, N.G., Kuznetsov, Vl.V., and Nosov, A.M., Occurrence of 14-hydroxylated taxoids in the plant in vitro cell cultures of different yew species (Taxus spp.), Dokl. Biochem. Biophys., 2017, vol. 476, p. 337.

    Article  CAS  PubMed  Google Scholar 

  35. Khandy, M.T., Kochkin, D.V., Tomilova, S.V., Galishev, B.A., Sukhanova, E.S., Klyushin, A.G., Ivanov, I.M., and Nosov, A.M., Obtaining and study of callus and suspension plant cell cultures of Tribulus terrestris L., a producer of steroidal glycosides, Appl. Biochem. Microbiol., 2017, vol. 53, p. 800.

    Article  CAS  Google Scholar 

  36. Kreis, W., Exploiting plant cell culture for natural product formation, J. Appl. Bot. Food Qual., 2019, vol. 92, p. 216.

    CAS  Google Scholar 

  37. Máthé, C., Demeter, Z., Resetár, A., Gonda, S., Balázs, A., Szôke, É., Kiss, Z., Simon, Á., Székely, V., Riba, M., Garda, T., Gere, B., Noszály, Z., Molnár, A.V., and Vasas, G., The plant tissue culture collection at the department of botany, University of Debrecen, Acta Biol. (Szeged), 2012, vol. 56, p. 179.

    Google Scholar 

  38. Nagata, T., Nemoto, Y., and Hasezawa, S., Tobacco BY–2 cell line as the “HeLa” cell in the cell biology of higher plants, Int. Rev. Cytol., 1992, vol. 132, p. 1.

    Article  CAS  Google Scholar 

  39. Takahashi, S., Kojo, K.H., Kutsuna, N., Endo, M., Toki, S., Isoda, H., and Hasezawa, S., Differential responses to high- and low-dose ultraviolet-B stress in tobacco Bright Yellow-2 cells, Front. Plant Sci., 2015, vol. 6, p. 254. https://doi.org/10.3389/fpls.2015.00254

    Article  PubMed  PubMed Central  Google Scholar 

  40. Novikova, G.V., Mur, L.A.J., Nosov, A.V., Fomenkov, A.A., Mironov, K.S., Mamaeva, A.S., Shilov, E.S., Rakitin, V.Y., and Hall, M.A., Nitric oxide has a concentration-dependent effect on the cell cycle acting via EIN2 in Arabidopsis thaliana cultured cells, Front. Physiol., 2017, vol. 8: 142.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zlobin, I.E., Pashkovskiy, P.P., Kartashov, A.V., Nosov, A.V., Fomenkov, A.A., and Kuznetsov, Vl.V., The relationship between cellular Zn status and regulation of Zn homeostasis genes in plant cells, Environ. Exp. Bot., 2020, vol. 176, art. ID 104104. https://doi.org/10.1016/j.envexpbot.2020.104104

    Article  CAS  Google Scholar 

  42. Xu, J. and Zhang, N., On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect, Pharm. Bioprocess., 2014, vol. 2, p. 499.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Davoodi, A., Khoshvishkaie, E., and Azadbakht, M., Plant cells technology as an effective biotechnological approach for high scale production of pharmaceutical natural compounds; a meta-analysis study, Pharm. Biomed. Res., 2019, vol. 5, p. 1.

    CAS  Google Scholar 

  44. Ochoa-Villarreal, M., Howat, S., Hong, S., Jang, M.O., Jin, Y.-W., Lee, E.-K., and Loake, G.J., Plant cell culture strategies for the production of natural products, BMB Rep., 2016, vol. 49, p. 149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nosov, A.M., Application of cell technologies for production of plant-derived bioactive substances of plant origin, Appl. Biochem. Microbiol., 2012, vol. 48, p. 609.

    Article  CAS  Google Scholar 

  46. Chandran, H., Meena, M., Barupal, T., and Sharma, K., Plant tissue culture as a perpetual source for production of industrially important bioactive compounds, Biotechnol. Rep., 2020, vol. 26, p. e00450. https://doi.org/10.1016/j.btre.2020.e00450

    Article  Google Scholar 

  47. Ulbrich, B., Wiesner, W., and Arens, H., Large-scale production of rosmarinic acid from plant cell cultures of Coleus blume Benth, in Primary and Secondary Metabolism of Plant Cell Cultures, Neumann, K.-H., Barz, W., and Reinhard, E., Eds., Heidelberg: Springer-Verlag, 1985, p. 293.

    Google Scholar 

  48. Kobayashi, Y., Akita, M., Sakamoto, K., Liu, H., Shigeoka, T., Koyano, T., Kawamura, M., and Furuya, T., Large-scale production of anthocyanin by Aralia cordata cell suspension cultures, Appl. Microbiol. Biotechnol., 1993, vol. 40, p. 215. https://doi.org/10.1007/BF00170369

    Article  CAS  Google Scholar 

  49. Smart, N.J. and Fowler, M.W., An airlift column bioreactor suitable for large-scale cultivation of plant cell suspensions, J. Exp. Bot., 1984, vol. 35, p. 531. https://doi.org/10.1093/jxb/35.4.531

    Article  Google Scholar 

  50. Goodman, J. and Walsh, V., The Story of Taxol: Nature and Politics in the Pursuit of an Anti-Cancer Drug, Cambridge: Cambridge Univ. Press, 2001.

    Google Scholar 

  51. Sato, F. and Yamada, Y., High berberine-producing cultures of Coptis japonica cells, Phytochemistry, 1984, vol. 23, p. 281. https://doi.org/10.1016/S0031-9422(00)80318-0

    Article  CAS  Google Scholar 

  52. Tabata, M. and Fujita, Y., Production of shikonin by plant cell cultures, in Biotechnology in Plant Science, Zaitlin, M., Day, P., and Hollaender, A., Eds., Orlando, 1985, p. 207.

    Google Scholar 

  53. Sasson, A., Production of useful biochemicals by higher-plant cell cultures: biotechnological and economic aspects, in Biotechnology: Economic and Social Aspects: Issues for Developing Countries, Cambridge: Cambridge Univ. Press, 1992, p. 81.

    Google Scholar 

  54. Azechi, S., Hashimoto, T., Yuyama, T., Nagatuska, S., Nakashizuka, M., Nishiyama, T., and Murata, A., Continuous cultivation of tobacco plant cells in an industrial scale plant, Hakko Kogaku Kaishi, 1983, vol. 61, p. 117.

    CAS  Google Scholar 

  55. Rittershaus, E., Ulrich, J., Weiss, A., and Westphal, K., Large scale industrial fermentation of plant cells: experiences in cultivation of plant cells in a fermentation cascade up to a volume of 75 000 L, BioEngineering, 1989, vol. 5, p. 28.

    Google Scholar 

  56. Hibino, K. and Ushiyama, K., Commercial production of ginseng by plant tissue culture technology, in Plant Cell and Tissue Culture for the Production of Food Ingredients, Fu, T.J., Singh, G., and Curtis, W.R., Eds., Boston: Springer-Verlag, 1999, p. 215.

    Google Scholar 

  57. Yazaki, K., Lithospermum erythrorhizon cell cultures: present and future aspects, Plant Biotechnol. (Tokyo), 2017, vol. 34, p. 131. https://doi.org/10.5511/plantbiotechnology.17.0823a

    Article  CAS  Google Scholar 

  58. Choi, H.-K., Son, J.-S., Na, G.-H., Hong, S.-S., Park, Y.-S., and Song, J.-Y., Mass production of paclitaxel by plant cell culture, J. Plant Biotechnol., 2002, vol. 29, p. 59.

    Article  Google Scholar 

  59. Park, I.H., Sohn, J.H., Kim, S.B., Lee, K. S., Chung, J.S., Lee, S.H., Kim, T.Y., Jung, K.H., Cho, E.K., Kim, Y.S., Song, H.S., Seo, J.H., Ryoo, H.M., Lee, S.A., Yoon, S.Y., et al., An open-label, randomized, parallel, phase III trial evaluating the efficacy and safety of polymeric micelle-formulated paclitaxel compared to conventional cremophor EL-based paclitaxel for recurrent or metastatic HER2-negative breast cancer, Cancer Res. Treat., 2017, vol. 49, p. 569.

    Article  CAS  PubMed  Google Scholar 

  60. Eibl, R., Meier, P., Stutz, I., Schildberger, D., Hühn, T., and Eibl, D., Plant cell culture technology in the cosmetics and food industries: current state and future trends, Appl. Microbiol. Biotechnol., 2018, vol. 102, p. 8661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nordlund, E., Lille, M., Silventoinen, P., Nygren, H., Seppänen-Laakso, T., Mikkelson, A., Aura, A.M., Heiniö, R.L., Nohynek, L., Puupponen-Pimiä, R., and Rischer, H., Plant cells as food—a concept taking shape, Food Res. Int., 2018, vol. 107, p. 297.

    Article  CAS  PubMed  Google Scholar 

  62. Schäfer, C., Bosshart, D., Frick, K., and Muller, C., European Food Trends Report 2019: Hacking Food: Redefining What We Eat, GDI-Study no. 47, Zurich: GDI Gottlieb Duttweiler Inst., 2019.

  63. Barbulova, A., Apone, F., and Colucci, G., Plant cell cultures as source of cosmetic active ingredients, Cosmetics, 2014, vol. 1, p. 94.

    Article  Google Scholar 

  64. Suvanto, J., Nohynek, L., Seppänen-Laakso, T., Rischer, H., Salminen, J.-P., and Puupponen-Pimiä, R., Variability in the production of tannins and other polyphenols in cell cultures of 12 Nordic plant species, Planta, 2017, vol. 246, p. 227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Trehan, S., Michniak-Kohn, B., and Beri, K., Plant stem cells in cosmetics: current trends and future directions, Future Sci. OA, 2017, vol. 3, p. FSO226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yue, W., Ming, Q.L., Lin, B., Rahman, K., Zheng, C.J., Han, T., and Qin, L.P., Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites, Crit. Rev. Biotechnol., 2016, vol. 36, p. 215.

    Article  CAS  PubMed  Google Scholar 

  67. Nielsen, E., Temporiti, M.E.E., and Cella, R., Improvement of phytochemical production by plant cells and organ culture and by genetic engineering, Plant Cell Rep., 2019, vol. 38, p. 1199.

    Article  CAS  PubMed  Google Scholar 

  68. Nosov, A.M., Functions of plant secondary metabolites in vivo and in vitro, Russ. J. Plant Physiol., 1994, vol. 41, p. 767.

    Google Scholar 

  69. Nosov, A.M., Popova, E.V., and Kochkin, D.V., Isoprenoid production via plant cell cultures: biosynthesis, accumulation and scaling-up to bioreactors, in Production of Biomass and Bioactive Compounds Using Bioreactor Technology, Paek, K.-Y. Murthy, H.N., and Zhong, J.-J., Eds., Dordrecht: Springer-Verlag, 2014, p. 563.

  70. Kostova, I. and Dinchev, D., Saponins in Tribulus terrestris—chemistry and bioactivity, Phytochem. Rev., 2005, vol. 4, p. 111.

    Article  CAS  Google Scholar 

  71. Christensen, L.P., Ginsenosides chemistry, biosynthesis, analysis, and potential health effects, Adv. Food Nutr. Res., 2008, vol. 55, p. 1.

    Article  CAS  Google Scholar 

  72. Tetali, S.D., Terpenes and isoprenoids: a wealth of compounds for global use, Planta., 2019, vol. 249, p. 1.

    Article  CAS  PubMed  Google Scholar 

  73. Murthy, H.N., Dandin, V.S., Zhong, J.-J., and Paek, K.-Y., Strategies for enhanced production of plant secondary metabolites from cell and organ cultures, in Production of Biomass and Bioactive Compounds Using Bioreactor Technology, Paek, K.-Y. Murthy, H.N., and Zhong, J.-J., Eds., Dordrecht: Springer-Verlag, 2014, p. 471.

  74. Smolenskaya, I.N., Reshetnyak, O.V., Smirnova, Y.N., Chernyak, N.D., Globa, E.B., Nosov, A.M., and Nosov, A.V., Opposite effects of synthetic auxins, 2,4‑dichlorophenoxyacetic acid and 1-naphthalene acetic acid on growth of true ginseng cell culture and synthesis of ginsenosides, Russ. J. Plant Physiol., 2013, vol. 54, p. 215.

    Article  CAS  Google Scholar 

  75. Smirnova, Yu.N., Reshetnyak, O.V., Smolenskaya, I.N., Voevudskaya, S.Yu., and Nosov, A.M., Effect of growth regulators on ginsenoside production in the cell culture of two ginseng species, Russ. J. Plant Physiol., 2010, vol. 57, p. 430.

    Article  CAS  Google Scholar 

  76. Tomilova, S.V., Khandy, M.T., Kochkin, D.V., Galishev, B.A., Klyushin, A.G., and Nosov, A.M., Effect of synthetic auxin analogs (2.4-D and α-NAA) on growth and biosynthetic characteristics of suspension cell culture of Tribulus terrestris L., Russ. J. Plant Physiol., 2020, vol. 67, p. 636.

    Article  CAS  Google Scholar 

  77. Butenko, R.G., Vorob’ev, A.S., Nosov, A.M., and Knyaz’kov, I.E., Synthesis, accumulation, and location of steroid glycosides in cells of different strains of Dioscorea deltoidea Wall, Sov. Plant Physiol., 1992, vol. 39, p. 763.

    Google Scholar 

  78. Dettmer, K., Aronov, P.A., and Hammock, B.D., Mass spectrometry-based metabolomics, Mass Spectrom. Rev., 2007, vol. 26, p. 51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, W.Z., Ye, M., Qiao, X., Liu, C.F., Miao, W.J., Bo, T., Tao, H.Y., and Guo, D.A., A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides, Anal. Chim. Acta, 2012, vol. 739, p. 56.

    Article  CAS  PubMed  Google Scholar 

  80. Kochkin, D.V., Kachala, V.V., Shashkov, A.S., Chizhov, A.O., Chirva, V.Y., and Nosov, A.M., Malonyl-ginsenoside content of a cell-suspension culture of Panax japonicus var. repens, Phytochemistry, 2013, vol. 93, p. 18.

    Article  CAS  PubMed  Google Scholar 

  81. Kochkin, D.V., Galishev, B.A., Glagoleva, E.S., Titova, M.V., and Nosov, A.M., Rare triterpene glycoside of ginseng (ginsenoside malonyl-Rg1) detected in plant cell suspension culture of Panax japonicus var. repens, Russ. J. Plant Physiol., 2017, vol. 64, p. 649.

    Article  CAS  Google Scholar 

  82. Kochkin, D.V., Zaitsev, G.P., Kachala, V.V., Chizhov, A.O., Demidova, E.V., Titova, M.V., Chirva, V.Y., Nosov, A.M., and Kuznetsov, V.V., The occurrence of gypenoside XVII in suspension cell culture of ginseng Panax japonicus var. repens, Dokl. Biochem. Biophys., 2012, vol. 442, p. 42.

    Article  CAS  PubMed  Google Scholar 

  83. Glagoleva, E.S. and Kochkin, D.V., Changes of the composition of triterpene glycosides during degradation of ginseng cell culture, Acta Nat., 2019, vol. 2, p. 267.

    Google Scholar 

  84. Kochkin, D.V., Globa, E.B., Demidova, E.V., Gaisinsky, V.V., Kuznetsov, V.V., and Nosov, A.M., Detection of taxuyunnanin C in suspension cell culture of Taxus canadensis, Dokl. Biochem. Biophys., 2019, vol. 485, p. 129.

    Article  CAS  PubMed  Google Scholar 

  85. Kovařik, A., Lim, K.Y., Soucková-Skalická, K., Matyasek, R., and Leitch, A.R., A plant culture (BY-2) widely used in molecular and cell studies is genetically unstable and highly heterogeneous, Bot. J. Linn. Soc., 2012, vol. 170, p. 459.

    Article  Google Scholar 

  86. Betekhtin, A., Rojek, M., Jaskowiak, J., Milewska-Hendel, A., Kwasniewska, J., Kostyukova, Y., Kurczynska, E., Rumyantseva, N., and Hasterok, R., Nuclear genome stability in long-term cultivated callus lines of Fagopyrum tataricum (L.) Gaertn., PloS One, 2017, vol. 12, p. e0173537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Smolenskaya, I.N., Zorinyants, S.E., Smirnova, Yu.N., Nosov, A.V., Chaiko, A.L., and Nosov, A.M., Suspension culture of Panax japonicus var. repens: 1. Growth parameters and cytogenetic characteristics, Biotekhnologiya, 2005, no. 5, p. 20.

  88. Reshetnyak, O.V., Smolenskaya, I.N., Smirnova, Yu.N., Chaiko, A.L., Nosov, A.V., and Nosov, A.M., Suspension culture of Panax japonicus var. repens: 2. Qualitative and quantitative composition of ginsenosides in cells cultivated in vitro, Biotekhnologiya, 2005, no. 6, p. 20.

  89. Heine-Dobbernack, E., Kiesecker, H., and Schumacher, H.M., Cryopreservation of dedifferentiated cell cultures, in Plant Cryopreservation: A Practical Guide, Reed, B.M., Ed., New York: Springer-Verlag, 2008, p. 141.

    Google Scholar 

  90. Kim, S.I., Choi, H.K., Son, J.S., Yun, J.H., Jang, M.S., Kim, H.R., Song, J.Y., Kim, J.H., Choi, H.J., and Hong, S.S., Cryopreservation of Taxus chinensis suspension cell cultures, CryoLetters, 2001, vol. 22, p. 43.

    PubMed  Google Scholar 

  91. Fedorovskii, D.N., Chernyak, N.D., and Popov, A.S., The disturbing effects of cryopreservation on the plasma membranes of ginseng cells, Sov. Plant Physiol., 1993, vol. 40, p. 94.

    Google Scholar 

  92. Joshi, A. and Teng, W.L., Cryopreservation of Panax ginseng cells, Plant Cell Rep., 2000, vol. 19, p. 971.

    Article  CAS  PubMed  Google Scholar 

  93. Mannonen, L., Toivonen, L., and Kauppinen, V., Effects of long-term preservation on growth and productivity of Panax ginseng and Catharanthus roseus cell cultures, Plant Cell Rep., 1990, vol. 9, p. 173.

    Article  CAS  PubMed  Google Scholar 

  94. Seitz, U. and Reinhard, E., Growth and ginsenoside patterns of cryopreserved Panax ginseng cell cultures, J. Plant Physiol., 1987, vol. 131, p. 215.

    Article  CAS  Google Scholar 

  95. Butenko, R.G., Popov, A.S., Volkova, L.A., Chernyak, N.D., and Nosov, A.M., Recovery of cell cultures and their biosynthetic capacity after storage of Dioscorea deltoidea and Panax ginseng cells in liquid nitrogen, Plant Sci. Lett., 1984, vol. 33, p. 285.

    Article  CAS  Google Scholar 

  96. Mikula, A., Comparison of three techniques for cryopreservation and reestablishment of long-term Centiana tibetica suspension culture, CryoLetters., 2006, vol. 27, p. 269.

    CAS  PubMed  Google Scholar 

  97. Samar, F., Mujib, A., Nasim, S.A., and Siddiqui, Z.H., Cryopreservation of embryogenic cell suspension of Catharanthus roseus L. (G) Don., Plant Cell, Tissue Organ Cult., 2009, vol. 98, p. 1.

    Article  CAS  Google Scholar 

  98. Krivokharchenko, A.S., Chernyak, N.D., and Nosov, A.M., Cryopreservation of suspension cultures of plant cells by the freezing technique elaborated for mammalian embryos, Russ. J. Plant Physiol., 1999, vol. 46, p. 831.

    CAS  Google Scholar 

  99. Titova, M.V., Shumilo, N.A., Chernyak, N.D., Krivokharchenko, A.S., Oreshnikov, A.V., and Nosov, A.M., Use of cryoconservation to maintaining strain stability upon outfit culturing of Polyscias filicifolia Bailey cell suspension I. Growth characteristics of restored culture, Biotechnol. Russ., 2007, no. 5, p. 79.

  100. Volkova, L.A., Urmantseva, V.V., Popova, E.V., and Nosov, A.M., Physiological, cytological and biochemical stability of Medicago sativa L. cell culture after 27 years of cryogenic storage, CryoLetters, 2015, vol. 36, p. 252.

Download references

Funding

The study was carried out with the financial support of the Russian Foundation for Basic Research in the framework of the scientific project Expansion no. 19-116-50163.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Popova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Dedicated to the 100th Anniversary of the Birth of Corresponding Member of the Russian Academy of Sciences Raisa Georgievna Butenko, Founder of the Field of Culture of Isolated Cells and Tissues of Higher Plants in Russia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, E.V., Nosov, A.V., Titova, M.V. et al. Advanced Biotechnologies: Collections of Plant Cell Cultures As a Basis for Development and Production of Medicinal Preparations. Russ J Plant Physiol 68, 385–400 (2021). https://doi.org/10.1134/S102144372103016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144372103016X

Keywords:

Navigation