Skip to main content
Log in

Nitrogen-Doped Carbon Nanotubes as an Effective Support of Heterogeneous Catalysts for Selective Alkene Oxidation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Nitrogen-doped carbon nanotubes (N-CNTs) with different degrees of nitrogen doping were synthesized. The effects of nitrogen in the N-CNTs on the hydrophilic–hydrophobic properties of carbon nanotubes and their activity in the decomposition of Н2О2 were studied. Various approaches to the surface modification of N-CNTs by alkyl groups were studied, and the high resistance of N-CNTs to alkylation was found. Heterogeneous catalysts based on the polyoxometallate [PO4{WO(O2)2}4]3– and N-CNTs with a low degree of nitrogen doping (≤1.8 at %) were successfully synthesized. The high efficiency of the catalysts in the liquid-phase reactions of selective oxidation of alkenes using H2O2 as a green oxidizer was found, and the heterogeneous nature of catalysis was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Sienel, G., Rieth, R., and Rowbottom, K.T., Ullmann’s Encyclopedia of Industrial Chemistry, 2000, vol. 13, p. 139.

    Google Scholar 

  2. Swern, D., Organic Peroxides, Vol. II, New York: Wiley-Interscience, 1971, p. 963.

    Google Scholar 

  3. Fine Chemicals through Heterogeneous Catalysis, Sheldon, R.A. and van Bekkum, H., Eds., Wiley:  Weinheim, 2001, p. 636.

  4. Jones, C.W., Applications of Hydrogen Peroxide and Derivatives, Cambridge: Royal Society of Chemistry, 1999, p. 264.

    Google Scholar 

  5. Catalytic Oxidations with Hydrogen Peroxide as Oxidant, Strukul, G., Ed., Berlin: Springer, 2013, p. 286.

    Google Scholar 

  6. Hill, C.L. and Prosser-McCartha, C.M., Coord. Chem. Rev., 1995, vol. 143, p. 407.

    Article  CAS  Google Scholar 

  7. Venturello, C., D’Aloisio, R., Bart, J.C.J., and Ricci, M., J. Mol. Catal., 1985, vol. 32, no. 1, p. 107.

    Article  CAS  Google Scholar 

  8. Panicheva, L.P., Meteleva, G.P., Berlina, O.V., and Panichev, S.A., Pet. Chem., 2006, vol. 46, no. 6, p. 422.

    Article  Google Scholar 

  9. Eder, D., Chem. Rev., 2010, vol. 110, p. 1348.

    Article  CAS  Google Scholar 

  10. Toma, F.M., Sartorel, A., Iurlo, M., Carraro, M., Parisse, P., Maccato, C., Rapino, S., Gonzalez, B.R., Amenitsch, H., Da, RosT., Casalis, L., Goldoni, A., Marcaccio, M., Scorrano, G., Scoles, G., Paolucci, F., Prato, M., and Bonchio, M., Nat. Chem., 2010, vol. 2, p. 826.

    Article  CAS  Google Scholar 

  11. Guo, S.-X., Liu, Y., Lee, C.-Y., Bond, A., Zhang, M.J., Geletii, Y.V., and Hill, C.L., Energy Environ. Sci., 2013, vol. 6, p. 2654.

    Article  CAS  Google Scholar 

  12. Kawasaki, N., Wang, H., Nakanishi, R., Hamanaka, S., Kitaura, R., Shinohara, H., Yokoyama, T., Yoshikawa, H., and Awaga, K., Angew. Chem., Int. Ed., 2010, vol. 50, p. 3471.

    Article  Google Scholar 

  13. Ji, Y., Huang, L., Hu, J., Streb, C., and Song, Y.-F., Energy Environ. Sci., 2015, vol. 8, p. 776.

    Article  CAS  Google Scholar 

  14. Wang, R., Yu, F., Zhang, G., and Zhao, H., Catal. Today, 2010, vol. 150, p. 37.

    Article  CAS  Google Scholar 

  15. Podyacheva, O.Yu. and Ismagilov, Z.R., Catal. Today, 2015, vol. 249, p. 12.

    Article  CAS  Google Scholar 

  16. Arrigo, R., Schuster, M.E., Xie, Z., Yi, Y., Wowsnick, G., Sun, L.L., Hermann, K.E., Friedrich, M., Kast, P., Hävecker, M., Knop-Gericke, A., and Schlögl, R., ACS Catal., 2015, vol. 5, p. 2740.

    Article  CAS  Google Scholar 

  17. Inagaki, M., Toyoda, M., Soneda, Y., and Morishita, T., Carbon, 2018, vol. 132, p. 104.

    Article  CAS  Google Scholar 

  18. Zacharska, M., Podyacheva, O.Y., Kibis, L.S., Boronin, A.I., Senkovskiy, B.V., Gerasimov, E.Y., Taran, O.P., Ayusheev, A.B., Parmon, V.N., Leahy, J.J., and Bulushev, D.A., ChemCatChem, 2015, vol. 7, no. 18, p. 2910.

    Article  CAS  Google Scholar 

  19. Ayusheev, A.B., Taran, O.P., Seryak, I.A., Podyacheva, O.Y., Descorme, C., Besson, M., Kibis, L.S., Boronin, A.I., Romanenko, A.I., Ismagilov, Z.R., and Parmon, V.N., Appl. Catal., B, 2014, vol. 146, p. 177.

    Article  CAS  Google Scholar 

  20. Arrigo, R., Schuster, M.E., Xie, Z.L., Yi, Y.M., Wowsnick, G., Sun, L.L., Hermann, K.E., Friedrich, M., Kast, P., Havecker, M., Knop-Gericke, A., and Schlogl, R., ACS Catal., 2015, vol. 5, no. 5, p. 2740.

    Article  CAS  Google Scholar 

  21. Suslova, E.V., Savilov, S.V., Egorov, A.V., and Lunin, V.V., Kinet. Catal., 2019, vol. 60, p. 87.

    Article  CAS  Google Scholar 

  22. Bulushev, D.A., Zacharska, M., Shlyakhova, E.V., Chuvilin, A.L., Guo, Y.N., Beloshapkin, S., Okotrub, A.V., and Bulusheva, L.G., ACS Catal., 2016, vol. 6, no. 2, p. 681.

    Article  CAS  Google Scholar 

  23. He, L., Weniger, F., Neumann, H., and Beller, M., Angew. Chem., Int. Ed., 2016, vol. 55, no. 41, p. 12582.

    Article  CAS  Google Scholar 

  24. Evtushok, V.Yu., Suboch, A.N., Podyacheva, O.Yu., Stonkus, O.A., Zaikovskii, V.I., Chesalov, Yu.A., Kibis, L.S., and Kholdeeva, O.A., ACS Catal., 2018, vol. 8, p. 1297.

    Article  CAS  Google Scholar 

  25. Evtushok, V.Yu., Ivanchikova, I.D., Podyacheva, O.Yu., Stonkus, O.A., Suboch, A.N., Chesalov, Y.A., Zalomaeva, O.V., and Kholdeeva, O.A., Front. Chem., 2019, vol. 7, p. 858:1-14.

  26. Suboch, A.N., Cherepanova, S.V., Kibis, L.S., Svintsitskiy, D.A., Stonkus, O.A., Chesnokov, V.V., Romanenko, A.I., Ismagilov, Z.R., and Podyacheva, O.Yu., Fullerenes, Nanotubes, Carbon Nanostruct., 2016, vol. 24, p. 520.

    Article  CAS  Google Scholar 

  27. Podyacheva, O.Y., Cherepanova, S.V., Romanenko, A.I., Kibis, L.S., Svintsitskiy, D.A., Boronin, A.I., Stonkus, O.A., Suboch, A.N., Puzynin, A.V., and Ismagilov, Z.R., Carbon, 2017, vol. 122, p. 475.

    Article  CAS  Google Scholar 

  28. de Correa, C.M., J. Mol. Catal. A: Chem., 2002, vol. 185, nos. 1−2, p. 269.

    Article  Google Scholar 

  29. Chizari, K., Janowska, I., Houlle, M., Florea, I., Ersen, O., Romero, T., Bernhardt, P., Ledoux, M.J., and Pham-Huu, C., Appl. Catal., A, 2010, vol. 380, p. 72.

  30. Kumar, K.V., Preuss, K., Guo, Z.X., and Titirici, M.M., J. Phys. Chem. C, 2016, vol. 120, p. 18167.

    Article  CAS  Google Scholar 

  31. Xu, J., Wu, F., Jiang, Q., and Li, Y.-X., Catal. Sci. Technol., 2015, vol. 5, p. 447.

    Article  CAS  Google Scholar 

  32. Clerici, M. G., Kinet. Catal., 2015, vol. 56, no. 4, p. 450.

    Article  CAS  Google Scholar 

  33. Esipovich, A.L., Belousov, A.S., Kanakov, E.A., Mironova, V.Yu., Rogozhin, A.E., Danov, S.M., Vorotyntsev, A.V., and Makarov, D.A., Kinet. Catal., 2019, vol. 16, p. 62.

    Article  Google Scholar 

  34. Kholdeeva, O.A. and Trukhan, N.N., Russ. Chem. Rev. 2006, vol. 75, no. 5, p. 411.

    Article  CAS  Google Scholar 

  35. Bonon, A.J., Mandelli, D., Kholdeeva, O.A., Barmatova, M.V., Kozlov, Y.N., and Shul’pin, G.B., Appl. Catal., A, 2009, vol. 365, no. 1, p. 96.

Download references

ACKNOWLEDGMENTS

We are grateful to O.A. Nikolaeva for studying the samples by a TPO method.

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 18-33-00764) and the Ministry of Science and Higher Education (project no. AAAA-A17-117041710084-2). The studies were carried out using the equipment of the Center of Collective Use “National Center for Catalyst Research.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Suboch.

Ethics declarations

The authors have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and designations: CNTs, carbon nanotubes; N‑CNTs, nitrogen-containing carbon nanotubes; POMs, polyoxometallates; PW4, the tetranuclear phosphotungstate [PO4{WO(O2)2}4]3–; NPy, NPyr, NQ, and NOx, pyridine-like, pyrrole, graphite-like, and oxidized structural positions, respectively; TG, thermogravimetry; DTA, differential thermal analysis; DSC, differential scanning calorimetry; TPO, temperature-programmed oxidation; XPS, X-ray photoelectron spectroscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suboch, A.N., Evtushok, V.Y., Kibis, L.S. et al. Nitrogen-Doped Carbon Nanotubes as an Effective Support of Heterogeneous Catalysts for Selective Alkene Oxidation. Kinet Catal 62, 288–298 (2021). https://doi.org/10.1134/S0023158421020105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421020105

Keywords:

Navigation