Skip to main content
Log in

An Apparatus for Forming Three-Dimensional Structures by the Method of Two-Photon Femtosecond Polymerization with Simultaneous Spatiotemporal Focusing

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

An apparatus for 3D laser printing by the two-photon polymerization technique using a scheme for spatiotemporal focusing of femtosecond laser radiation is described. The system, which is based on available components) allows the formation of 3D centimeter-size structures with the micron resolution in all directions; this is its main advantage over other systems, including commercial ones. When creating the apparatus, a minimum number of optical and optomechanical components were used, thus significantly increasing the accessibility of such apparatuses in various laboratories. This apparatus can be used to manufacture 3D structures for various purposes, including scaffold structures for tissue-engineering tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Awad, A., Fina, F., Goyanes, A., Gaisford, S., and Basit, A.W., Int. J. Pharm., 2020, vol. 586, p. 119594. https://doi.org/10.1016/j.ijpharm.2020.119594

    Article  Google Scholar 

  2. Kruth, J.P., Wang, X., Laoui, T., and Froyen, L., Assem. Autom., 2003, vol. 23, no. 4, p. 357. https://doi.org/10.1108/01445150310698652

    Article  Google Scholar 

  3. Schmidleithner, C. and Kalaskar, D.M., Stereolithography, IntechOpen, 2018, vol. 32, p. 137. https://doi.org/10.5772/intechopen.78147

    Article  Google Scholar 

  4. Bártolo, P.J., Stereolithography: Materials, Processes and Applications, Springer Science & Business Media, 2011.

    Book  Google Scholar 

  5. Fernández-Pradas, J.M., Colina, M., Serra, P., Dominguez, J., and Morenza, J.L., Thin Solid Films, 2004, vols. 453–454, p. 27. https://doi.org/10.1016/j.tsf.2003.11.154

    Article  Google Scholar 

  6. Orimi, H.E., Kolkooh, S.S.H, Hooker, E., Narayanswamy, S., Larrivée, B., and Boutopoulos, C., Sci. Rep., 2020, vol. 10, no. 1, p. 9730. https://doi.org/10.1038/s41598-020-66565-x

    Article  ADS  Google Scholar 

  7. Willis, D.A. and Grosu, V., Appl. Phys. Lett., 2005, vol. 86, no. 24, p. 244103. https://doi.org/10.1038/s41598-020-66565-x

    Article  ADS  Google Scholar 

  8. Kuznetsov, A.I., Kiyan, R., and Chichkov, B.N., Opt. Express, 2010, vol. 18, no. 20, p. 21198. https://doi.org/10.1038/s41598-020-66565-x

    Article  ADS  Google Scholar 

  9. Mezel, C., Souquet, A., Hallo, L., and Guillemot, F., Biofabrication, 2010, vol. 2, no. 1, pp. 1–7. https://doi.org/10.1088/1758-5082/2/1/014103

    Article  Google Scholar 

  10. Antoshin, A.A., Churbanov, S.N., Minaev, N.V., Zhang, D., Zhang, Y., Shpichka, A.I., and Timashev, P.S., Bioprinting, 2019, vol. 15, p. e00052. https://doi.org/10.1016/j.bprint.2019.e00052

    Article  Google Scholar 

  11. Yusupov, V., Churbanov, S., Churbanova, E., Bardakova, K., Antoshin, A., Evlashin, S., Timashev, P., and Minaev, N., Int. J. Bioprint., 2020, vol. 6, no. 3, p. 1. https://doi.org/10.18063/ijb.v6i3.271

    Article  Google Scholar 

  12. Yusupov, V.I., Gorlenko, M.V., Cheptsov, V.S., Minaev, N.V., Churbanova, E.S., Zhigarkov, V.S., Chutko, E.A., Evlashin, S.A., Chichkov, B.N., and Bagratashvili, V.N., Laser Phys. Lett., 2018, vol. 15, no. 6, p. 065604. https://doi.org/10.1088/1612-202X/aab5ef

    Article  ADS  Google Scholar 

  13. Gorlenko, M.V., Chutko, E.A., Churbanova, E.S., Minaev, N.V., Kachesov, K.I., Lysak, L.V., Evlashin, S.A., Cheptsov, V.S., Rybaltovskiy, A.O., Yusupov, V.I., Zhigarkov, V.S., Davydova, G.A., Chichkov, B.N., and Bagratashvili, V.N., J. Biol. Eng., 2018, vol. 12, no. 1, p. 27. https://doi.org/10.1186/s13036-018-0117-4

    Article  Google Scholar 

  14. Minaev, N.V., Epifanov, E.O., and Yusupov, V.I., Instrum. Exp. Tech., 2021, vol. 64, no. 3, pp. 464–467. https://doi.org/10.1134/S0020441221020147

    Article  Google Scholar 

  15. Minaev, N.V., Antonov, E.N., Minaeva, S.A., and Churbanov, S.N., Prib. Tekh. Eksp., 2019, no. 1, p. 150. https://doi.org/10.1134/S003281621901018X

  16. Minaev, N.V., Mironov, A.V., Minaeva, S.A., Mironova, O.A., Syachina, M.A., Krumins, E., Howdle, S., and Popov, V.K., Instrum. Exp. Tech., 2020, vol. 63, no. 2, pp. 288–290. https://doi.org/10.1134/S0020441220020116

    Article  Google Scholar 

  17. Nguyen, A.K. and Narayan, R.J., Mater. Today, 2017, vol. 20, no. 6, p. 314. https://doi.org/10.1016/j.mattod.2017.06.004

    Article  Google Scholar 

  18. LaFratta, C.N. and Baldacchini, T., Micromachines, 2017, vol. 8, no. 4, pp. 1–25. https://doi.org/10.3390/mi8040101

    Article  Google Scholar 

  19. Obata, K., El-Tamer, A., Koch, L., Hinze, U., and Chichkov, B.N., Light: Sci. Appl., 2013, vol. 2, pp. 8–11. https://doi.org/10.1038/lsa.2013.72

    Article  Google Scholar 

  20. Cheng, Y., Sugioka, K., Midorikawa, K., Masuda, M., Toyoda, K., Kawachi, M., and Shihoyama, K., Opt. Lett., 2003, vol. 28, no. 1, p. 55. https://doi.org/10.1364/ol.28.000055

    Article  ADS  Google Scholar 

  21. Kaplin, V.S., Glagolev, N.N., Shashkova, V.T., Matveeva, I.A., Shershnev, I.V., Zarkhina, T.S., Solovi-eva, A.B., Minaev, N.V., Aksenova, N.A., Shavkuta, B.S., Kopylov, A.S., Kuznetsova, D.S., Timashev, P.S., Shpichka, A.I., and Bezrukov, E.A., Polymers (Basel), 2020, vol. 12, no. 11, p. 1. https://doi.org/10.3390/polym12112525

    Article  Google Scholar 

  22. Demina, T., Bardakova, K., Minaev, N., Svidchenko, E., Istomin, A., Goncharuk, G., Vladimirov, L., Grachev, A., Zelenetskii, A., Timashev, P., and Akopova, T., Polymers (Basel), 2017, vol. 9, no. 12, p. 302. https://doi.org/10.3390/polym9070302

    Article  Google Scholar 

  23. He, F., Cheng, Y., Lin, J., Ni, J., Xu, Z., Sugioka, K., and Midorikawa, K., New J. Phys., 2011, vol. 13, p. 083014. https://doi.org/10.1088/1367-2630/13/8/083014

    Article  ADS  Google Scholar 

  24. He, F., Xu, H., Cheng, Y., Ni, J., Xiong, H., Xu, Z., Sugioka, K., and Midorikawa, K., Opt. Lett., 2010, vol. 35, no. 7, p. 1106. https://doi.org/10.1364/OL.35.001106

    Article  ADS  Google Scholar 

  25. Vitek, D.N., Adams, D.E., Johnson, A., Tsai, P.S., Backus, S., Durfee, C.G., Kleinfeld, D., and Squier, J.A., Opt. Express, 2010, vol. 18, no. 17, p. 18086. https://doi.org/10.1364/OE.18.018086

    Article  ADS  Google Scholar 

  26. Chu, W., Tan, Y., Wang, P., Xu, J., Li, W., Qi, J., and Cheng, Y., Adv. Mater. Technol., 2018, vol. 3, no. 5, p. 1. https://doi.org/10.1002/admt.201700396

    Article  ADS  Google Scholar 

  27. Tan, Y., Chu, W., Wang, P., Li, W., Qi, J., Xu, J., Wang, Z., and Cheng, Y., Phys. Scr., 2019, vol. 94, no. 1, p. 015501. https://doi.org/10.1088/1402-4896/aaec99

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to P.I. Zharikov for his help in assembling the experimental system.

Funding

This study was supported by the Russian Science Foundation, grant no. 19-75-00108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Minaev.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epifanov, E.O., Migal, E.A., Potemkin, F.V. et al. An Apparatus for Forming Three-Dimensional Structures by the Method of Two-Photon Femtosecond Polymerization with Simultaneous Spatiotemporal Focusing. Instrum Exp Tech 64, 891–897 (2021). https://doi.org/10.1134/S0020441221060026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221060026

Navigation