Skip to main content

Polymer Processing Through Multiphoton Absorption

  • Chapter
  • First Online:
Polymer and Photonic Materials Towards Biomedical Breakthroughs

Abstract

Since 3D printing became widely available for a variety of applications, the demand for three-dimensional structures with high resolution has grown. Direct laser writing by multiphoton polymerization, due to its unique, nm-scale resolution, has proven to be an indispensable tool for high-accuracy 3D printing. Here, we will discuss the basic principles of direct laser writing by multiphoton polymerization, the equipment used, and the most commonly employed materials. Finally, we will discuss its application in the field of tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Malinauskas, M. Farsari, A. Piskarkas, S. Juodkazis, 3D structuring of transparent materials: a decade of advances. Phys. Rep. 533(1), 1–31 (2013)

    Google Scholar 

  2. A. Ovsianikov, V. Mironov, J. Stampfl, R. Liska, Multi-photon processing for applications in biology and tissue engineering. Expert Rev. Med. Dev. 9, 613–633 (2012)

    Article  Google Scholar 

  3. S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132–134 (1997)

    Article  Google Scholar 

  4. M.M. Hossain, M. Gu, Fabrication methods of 3D periodic metallic nano/microstructures for photonics applications. Las. Photon. Rev. 8, 233–249 (2014)

    Article  Google Scholar 

  5. S. Juodkazis, V. Mizeikis, H. Misawa, Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications. J. Appl. Phys. 106, 051101 (2009). https://doi.org/10.1063/1.3216462

    Article  Google Scholar 

  6. E. Brasselet, M. Malinauskas, A. Zukauskas, S. Juodkazis, Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum. Appl. Phys. Lett. 97, 211108 (2010). https://doi.org/10.1063/1.3517519

    Article  Google Scholar 

  7. M. Malinauskas et al., Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization. J. Opt. 12, 124010 (2010). https://doi.org/10.1088/2040-8978/12/12/124010

    Article  Google Scholar 

  8. L. Amato et al., Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip. Lab Chip 12, 1135–1142 (2012). https://doi.org/10.1039/c2lc21116e

    Article  Google Scholar 

  9. C. Schizas et al., On the design and fabrication by two-photon polymerization of a readily assembled micro-valve. Int. J. Adv. Manuf. Technol. 48, 435–441 (2010). https://doi.org/10.1007/s00170-009-2320-4

    Article  Google Scholar 

  10. S. Galanopoulos et al., Design, fabrication and computational characterization of a 3D micro-valve built by multi-photon polymerization. Micromachines 5, 505–514 (2014). https://doi.org/10.3390/mi5030505

    Article  Google Scholar 

  11. M.T. Raimondi et al., Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine. J. Appl. Biomater. Fundamental Mater. 10, 56–66 (2012)

    Google Scholar 

  12. J. Torgersen et al., Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms. J. Biomed. Opt. 17, 105008 (2012). https://doi.org/10.1117/1.jbo.17.10.105008

    Article  Google Scholar 

  13. J. Torgersen et al., Hydrogels for two-photon polymerization: A toolbox for mimicking the extracellular matrix. Adv. Funct. Mater. 23, 4542–4554 (2013). https://doi.org/10.1002/adfm.201203880

    Article  Google Scholar 

  14. R.W. Boyd, Nonlinear Optics (Academic Press, Boston, 2008)

    Google Scholar 

  15. M. Göppert-Mayer, Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. 401, 273–294 (1931)

    Article  Google Scholar 

  16. W. Kaiser, C.G.B. Garrett, Two-photon excitation in CaF2:Eu2+. Phys. Rev. Lett. 7, 229–232 (1961)

    Article  Google Scholar 

  17. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Vanstryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990). https://doi.org/10.1109/3.53394

    Article  Google Scholar 

  18. N.S. Makarov, M. Drobizhev, A. Rebane, Two-photon absorption standards in the 550-1600 nm excitation wavelength range. Opt. Express 16, 4029–4047 (2008). https://doi.org/10.1364/oe.16.004029

    Article  Google Scholar 

  19. Nanoscribe. http://www.nanoscribe.de/

  20. Workshop of Photonics. http://www.wophotonics.com/

  21. Newport. http://www.newport.com/

  22. Teem Photonics. http://www.teemphotonics.com/

  23. E. Kabouraki et al., Redox multiphoton polymerization for 3D nanofabrication. Nano Lett. 13, 3831–3835 (2013). https://doi.org/10.1021/nl401853k

    Article  Google Scholar 

  24. A.S. Quick et al., Fabrication and spatially resolved functionalization of 3d microstructures via multiphoton-induced diels–Alder chemistry. Adv. Funct. Mater. 24, 3571–3580 (2014). https://doi.org/10.1002/adfm.201304030

  25. C.N. LaFratta, J.T. Fourkas, T. Baldacchini, R.A. Farrer, Multiphoton fabrication. Angew. Chem. Int. Ed. 46, 6238–6258 (2007). https://doi.org/10.1002/anie.200603995

    Article  Google Scholar 

  26. M. Farsari, G. Filippidis, K. Sambani, T.S. Drakakis, C. Fotakis, Two-photon polymerization of an eosin Y-sensitized acrylate composite. J. Photochem. Photobio. A: Chem. 181, 132–135 (2006). https://doi.org/10.1016/j.jphotochem.2005.11.005

    Article  Google Scholar 

  27. A. Ovsianikov et al., Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials. Opt. Express 17, 2143–2148 (2009)

    Article  Google Scholar 

  28. M. Farsari, M. Vamvakaki, B.N. Chichkov, Multiphoton polymerization of hybrid materials. J. Opt. 12, 124001 (2010). https://doi.org/10.1088/2040-8978/12/12/124001

    Article  Google Scholar 

  29. D.J.T. Kyle, A. Oikonomou, E. Hill, A. Bayat, Development and functional evaluation of biomimetic silicone surfaces with hierarchical micro/nano-topographical features demonstrates favourable in vitro foreign body response of breast-derived fibroblasts. Biomaterials 52, 88–102 (2015). https://doi.org/10.1016/j.biomaterials.2015.02.003

    Article  Google Scholar 

  30. S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Finer features for functional microdevices. Nature, 412, 697–698 (2001.) http://www.nature.com/nature/journal/v412/n6848/suppinfo/412697a0_S1.html

  31. X.M. Duan, H.B. Sun, K. Kaneko, S. Kawata, Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication. Thin Solid Films 453–54, 518–521 (2004)

    Article  Google Scholar 

  32. Z.B. Sun et al., Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures. Adv. Mater. 20, 914–919 (2008). https://doi.org/10.1002/adma.200702035

    Article  Google Scholar 

  33. Z.B. Sun et al., Two- and three-dimensional micro/nanostructure patterning of CdS-polymer nanocomposites with a laser interference technique and in situ synthesis. Nanotechnology 19, 035611 (2008)

    Article  Google Scholar 

  34. C.R. Mendonca et al., Three-dimensional fabrication of optically active microstructures containing an electroluminescent polymer. Appl. Phys. Lett. 95, 113309 (2009). https://doi.org/10.1063/1.3232207

    Article  Google Scholar 

  35. G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, B.J. Schwartz, Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures. Opt. Lett. 23, 1745–1747 (1998)

    Article  Google Scholar 

  36. K.D. Belfield et al., Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging. J. Phys. Org. Chem. 13, 837–849 (2000)

    Article  Google Scholar 

  37. S.M. Kuebler et al., Design and application of high-sensitivity two-photon initiators for three-dimensional microfabrication. J. Photochem. Photobio. A: Chem. 158, 163–170 (2003). https://doi.org/10.1016/s1010-6030(03)00030-3

    Article  Google Scholar 

  38. W.H. Teh et al., SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication. Appl. Phys. Lett. 84, 4095–4097 (2004). https://doi.org/10.1063/1.1753059

    Article  Google Scholar 

  39. V. Mizeikis, K.K. Seet, S. Juodkazis, H. Misawa, Three-dimensional woodpile photonic crystal templates for the infrared spectral range. Opt. Lett. 29, 2061–2063 (2004)

    Article  Google Scholar 

  40. K.K. Seet, V. Mizeikis, S. Juodkazis, H. Misawa, Three-dimensional circular spiral photonic crystal structures recorded by femtosecond pulses. J. Non-Cryst. Solids 352, 2390–2394 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.02.079

    Article  Google Scholar 

  41. B.L. Aekbote et al., Surface-modified complex SU-8 microstructures for indirect optical manipulation of single cells. Biomed. Opt. Express 7, 45–56 (2016). https://doi.org/10.1364/boe.7.000045

    Article  Google Scholar 

  42. W. Horn, S. Kroesen, C. Denz, Two-photon fabrication of organic solid-state distributed feedback lasers in rhodamine 6G doped SU-8. Appl. Phys. B-Lasers Opt. 117, 311–315 (2014). https://doi.org/10.1007/s00340-014-5837-7

    Article  Google Scholar 

  43. M. Licht, A. Uchugonova, K. Konig, M. Straub, Sub-15 fs multiphoton lithography of three-dimensional structures for live cell applications. J. Opt. 14, 7 (2012). https://doi.org/10.1088/2040-8978/14/6/065601

    Article  Google Scholar 

  44. M. Deubel et al., Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3, 444–447 (2004). https://doi.org/10.1038/nmat1155

    Article  Google Scholar 

  45. D. Wu et al., Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. Lab Chip 9, 2391–2394 (2009). https://doi.org/10.1039/b902159k

    Article  Google Scholar 

  46. G. Kumi, C.O. Yanez, K.D. Belfield, J.T. Fourkas, High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios. Lab Chip 10, 1057–1060. https://doi.org/10.1039/b923377f

  47. M. Stoneman, M. Fox, C.Y. Zeng, V. Raicu, Real-time monitoring of two-photon photopolymerization for use in fabrication of microfluidic devices. Lab Chip 9, 819–827 (2009). https://doi.org/10.1039/b816993d

    Article  Google Scholar 

  48. A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, B.N. Chichkov, Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. J. Tissue Eng. Regen. Med. 1, 443–449 (2007). https://doi.org/10.1002/term.57

    Article  Google Scholar 

  49. M. Farsari, G. Filippidis, C. Fotakis, Fabrication of three-dimensional structures by three-photon polymerization. Opt. Lett. 30, 3180–3182 (2005). https://doi.org/10.1364/ol.30.003180

    Article  Google Scholar 

  50. Y. Jun, P. Nagpal, D.J. Norris, Thermally stable organic–inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing. Adv. Mater. 20, 606–610 (2008)

    Article  Google Scholar 

  51. V. Dinca et al., Directed three-dimensional patterning of self-assembled peptide fibrils. Nano Lett. 8, 538–543 (2008). https://doi.org/10.1021/nl072798r

    Article  Google Scholar 

  52. A. Matei et al., Functionalized ormosil scaffolds processed by direct laser polymerization for application in tissue engineering. Appl. Surf. Sci. 278, 357–361 (2013). https://doi.org/10.1016/j.apsusc.2012.10.104

    Article  Google Scholar 

  53. http://www.microresist.de/products/ormocers/overview_ormocers_en.htm

  54. T.P. Bernat et al., Fabrication of micron-scale cylindrical tubes by two-photon polymerization. Fusion Sci. Technol. 70, 310–315 (2016). https://doi.org/10.13182/fst15-219

    Article  Google Scholar 

  55. M. Bieda, F. Bouchard, A.F. Lasagni, Two-photon polymerization of a branched hollow fiber structure with predefined circular pores. J. Photochem. Photobiol. A-Chem. 319, 1–7 (2016). https://doi.org/10.1016/j.jphotochem.2015.12.012

    Article  Google Scholar 

  56. A. Marino et al., Two-photon lithography of 3D Nanocomposite piezoelectric scaffolds for cell stimulation. ACS Appl. Mater. Interfaces 7, 25574–25579 (2015). https://doi.org/10.1021/acsami.5b08764

    Article  Google Scholar 

  57. E. Kapyla et al., Direct laser writing and geometrical analysis of scaffolds with designed pore architecture for three-dimensional cell culturing. J. Micromech. Microeng. 22, 13 (2012). https://doi.org/10.1088/0960-1317/22/11/115016

    Article  Google Scholar 

  58. E. Harnisch et al., Optimization of hybrid polymer materials for 2PP and fabrication of individually designed hybrid microoptical elements thereof. Opt. Mater. Express 5, 456–461 (2015). https://doi.org/10.1364/ome.5.000456

    Article  Google Scholar 

  59. S. Kalra, A. Singh, M. Gupta, V. Chadha, Ormocer: an aesthetic direct restorative material; an in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent. Contemp. Clin. Dentistry 3, 48–53 (2012). https://doi.org/10.4103/0976-237x.94546

    Article  Google Scholar 

  60. D. Karalekas, C. Schizas, Monitoring of solidification induced strains in two resins used in photofabrication. Mater. Des. 30, 3705–3712 (2009). https://doi.org/10.1016/j.matdes.2009.02.010

    Article  Google Scholar 

  61. M. Farsari, B.N. Chichkov, Materials processing: Two-photon fabrication. Nat Photon 3, 450–452 (2009)

    Article  Google Scholar 

  62. A. Ovsianikov et al., Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2, 2257–2262 (2008). https://doi.org/10.1021/nn800451w

    Article  Google Scholar 

  63. F. Claeyssens et al., Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25, 3219–3223 (2009). https://doi.org/10.1021/la803803m

    Article  Google Scholar 

  64. S. Psycharakis, A. Tosca, V. Melissinaki, A. Giakoumaki, A. Ranella, Tailor-made three-dimensional hybrid scaffolds for cell cultures. Biomed. Mater. 6(4), 045008 (2011). https://doi.org/10.1088/1748-6041/6/4/045008

    Article  Google Scholar 

  65. M.T. Raimondi et al., Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing. Acta Biomater. 9, 4579–4584 (2013). https://doi.org/10.1016/j.actbio.2012.08.022

    Article  Google Scholar 

  66. M. Malinauskas et al., A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses. J. Opt. 12, 035204 (2010). https://doi.org/10.1088/2040-8978/12/3/035204

    Article  Google Scholar 

  67. L. Jonusauskas et al., Plasmon assisted 3D microstructuring of gold nanoparticle-doped polymers. Nanotechnology 27, 154001 (2016). https://doi.org/10.1088/0957-4484/27/15/154001

    Article  Google Scholar 

  68. J. Maciulaitis et al., Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography. Biofabrication 7, 015015 (2015). https://doi.org/10.1088/1758-5090/7/1/015015

    Article  Google Scholar 

  69. S. Rekstyte, T. Jonavicius, M. Malinauskas, Direct laser writing of microstructures on optically opaque and reflective surfaces. Opt. Lasers Eng. 53, 90–97 (2014). https://doi.org/10.1016/j.optlaseng.2013.08.017

    Article  Google Scholar 

  70. S. Rekstyte, A. Zukauskas, V. Purlys, Y. Gordienko, M. Malinauskas, Direct laser writing of 3D polymer micro/nanostructures on metallic surfaces. Appl. Surf. Sci. 270, 382–387 (2013). https://doi.org/10.1016/j.apsusc.2013.01.034

    Article  Google Scholar 

  71. A. Zukauskas et al., Effect of the photoinitiator presence and exposure conditions on laser-induced damage threshold of ORMOSIL (SZ2080). Opt. Mater. 39, 224–231 (2015). https://doi.org/10.1016/j.optmat.2014.11.031

    Article  Google Scholar 

  72. C.C. Zhang et al., Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels. Sci. Rep. 6, 9 (2016). https://doi.org/10.1038/srep33281

    Article  Google Scholar 

  73. L. Jonusauskas, S. Rekstyte, M. Malinauskas, Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions. Opt. Eng. 53 (2014). https://doi.org/10.1117/1.oe.53.12.125102

  74. M. Manousidaki, D.G. Papazoglou, M. Farsari, S. Tzortzakis, Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica 3, 525–530 (2016). https://doi.org/10.1364/optica.3.000525

    Article  Google Scholar 

  75. A. Skarmoutsou et al., Nanomechanical properties of hybrid coatings for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 25, 48–62 (2013). https://doi.org/10.1016/j.jmbbm.2013.05.003

    Article  Google Scholar 

  76. K. Terzaki et al., Pre-osteoblastic cell response on three-dimensional, organic–inorganic hybrid material scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A 101A, 2283–2294 (2013). https://doi.org/10.1002/jbm.a.34516

    Article  Google Scholar 

  77. M. Chatzinikolaidou et al., Recombinant human bone morphogenetic protein 2 (rhBMP-2) immobilized on laser-fabricated 3D scaffolds enhance osteogenesis. Colloids Surf. B: Biointerfaces 149, 233–242 (2017). https://doi.org/10.1016/j.colsurfb.2016.10.027

    Article  Google Scholar 

  78. A.I. Aristov et al., 3D plasmonic crystal metamaterials for ultra-sensitive biosensing. Sci Rep 6, 25380 (2016)

    Article  Google Scholar 

  79. V. Melissinaki, M. Farsari, S. Pissadakis, A fiber-endface, Fabry-Perot vapor microsensor fabricated by multiphoton polymerization. IEEE J. Sel. Top. Quantum Electron. 21, 5600110 (2015). https://doi.org/10.1109/jstqe.2014.2381463

    Article  Google Scholar 

  80. G. Kenanakis et al., A three-dimensional infra-red metamaterial with asymmetric transmission. ACS Photonics 2, 287–294 (2015)

    Article  Google Scholar 

  81. P. Danilevicius et al., Burr-like, laser-made 3D microscaffolds for tissue spheroid encagement. Biointerphases 10, 021011 (2015). https://doi.org/10.1116/1.4922646

    Article  Google Scholar 

  82. M. Chatzinikolaidou et al., Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic–inorganic composite scaffolds for bone repair. Mater. Sci. Eng.: C 48, 301–309 (2015). https://doi.org/10.1016/j.msec.2014.12.007

    Article  Google Scholar 

  83. K. Terzaki et al., Mineralized self-assembled peptides on 3D laser-made scaffolds: a new route toward 'scaffold on scaffold' hard tissue engineering. Biofabrication 5, 045002 (2013). https://doi.org/10.1088/1758-5082/5/4/045002

    Article  Google Scholar 

  84. N. Vasilantonakis et al., Three-dimensional metallic photonic crystals with optical Bandgaps. Adv. Mater. 24, 1101–1105 (2012). https://doi.org/10.1002/adma.201104778

    Article  Google Scholar 

  85. I. Sakellari et al., Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano 6, 2302–2311 (2012). https://doi.org/10.1021/nn204454c

    Article  Google Scholar 

  86. K. Terzaki et al., 3D conducting nanostructures fabricated using direct laser writing. Opt. Mater. Express 1, 586–597 (2011)

    Article  Google Scholar 

  87. S.A. Skoog et al., Two-photon polymerization of 3-D zirconium oxide hybrid scaffolds for long-term stem cell growth. Biointerphases 9, 7 (2014). https://doi.org/10.1116/1.4873688

    Article  Google Scholar 

  88. I. Sakellari et al., Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication. Appl. Phys. A 100, 359–364 (2010). https://doi.org/10.1007/s00339-010-5864-0

    Article  Google Scholar 

  89. M. Malinauskas et al., 3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing. Opt. Lasers Eng. 50, 1785–1788 (2012). https://doi.org/10.1016/j.optlaseng.2012.07.001

    Article  Google Scholar 

  90. M. Oubaha et al., Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures. J. Mater. Chem. 22, 10552–10559 (2012). https://doi.org/10.1039/c2jm30512g

    Article  Google Scholar 

  91. J.L. Drury, D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337–4351 (2003). https://doi.org/10.1016/S0142-9612(03)00340-5

    Article  Google Scholar 

  92. J.D. Pitts, P.J. Campagnola, G.A. Epling, S.L. Goodman, Submicron multiphoton free-form fabrication of proteins and polymers: Studies of reaction efficiencies and applications in sustained release. Macromolecules 33, 1514–1523 (2000). https://doi.org/10.1021/ma9910437

    Article  Google Scholar 

  93. J.D. Pitts et al., New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: Bovine serum albumin and type 1 collagen. Photochem. Photobiol. 76, 135–144 (2002). https://doi.org/10.1562/0031-8655(2002)076<0135:npfmet>2.0.co;2

    Article  Google Scholar 

  94. S. Basu, P.J. Campagnola, Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation. J. Biomed. Mater. Res. A 71A, 359–368 (2004). https://doi.org/10.1002/jbm.a.30175

    Article  Google Scholar 

  95. S. Basu, P.J. Campagnola, Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multiphoton excitation. Biomacromolecules 5, 572–579 (2004). https://doi.org/10.1021/bm0344194

    Article  Google Scholar 

  96. S. Basu et al., Multiphoton excited fabrication of collagen matrixes cross-linked by a modified benzophenone dimer: Bioactivity and enzymatic degradation. Biomacromolecules 6, 1465–1474 (2005). https://doi.org/10.1016/bm049258y

    Article  Google Scholar 

  97. L.P. Cunningham, M.P. Veilleux, P.J. Campagnola, Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach. Opt. Exp. 14, 8613–8621 (2006). https://doi.org/10.1364/oe.14.008613

    Article  Google Scholar 

  98. P.J. Su et al., Mesenchymal stem cell interactions with 3D ECM modules fabricated via multiphoton excited photochemistry. Biomacromolecules 13, 2917–2925 (2012). https://doi.org/10.1021/bm300949k

    Article  Google Scholar 

  99. S.K. Seidlits, C.E. Schmidt, J.B. Shear, High-resolution patterning of hydrogels in three dimensions using direct-writep for cell guidance. Adv. Funct. Mater. 19, 3543–3551 (2009)

    Article  Google Scholar 

  100. E.T. Ritschdorff, J.B. Shear, Multiphoton lithography using a high-repetition rate microchip laser. Anal. Chem. 82, 8733–8737 (2010). https://doi.org/10.1021/ac101274u

    Article  Google Scholar 

  101. S. Turunen et al., Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity. Biofabrication 3, 045002 (2011)

    Article  Google Scholar 

  102. M.A. Skylar-Scott, M.C. Liu, Y.L. Wu, A. Dixit, M.F. Yanik, Guided homing of cells in multi-photon microfabricated bioscaffolds. Adv. Healthc. Mater. 5, 1233–1243 (2016). https://doi.org/10.1002/adhm.201600082

    Article  Google Scholar 

  103. K. Maximova et al., Silk patterns made by direct femtosecond laser writing. Biomicrofluidics 10, 054101 (2016)

    Article  Google Scholar 

  104. A. Ovsianikov et al., Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12, 851–858 (2011). https://doi.org/10.1021/bm1015305

    Article  Google Scholar 

  105. A. Ovsianikov et al., Laser Photofabrication of cell-containing hydrogel constructs. Langmuir 30, 3787–3794 (2014). https://doi.org/10.1021/la402346z

    Article  Google Scholar 

  106. V. Melissinaki et al., Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication 3, 045005 (2011). https://doi.org/10.1088/1758-5082/3/4/045005

    Article  Google Scholar 

  107. P. Danilevicius et al., The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds. Appl. Surf. Sci. 336, 2–10 (2015)

    Article  Google Scholar 

  108. O. Kufelt, A. El-Tamer, C. Sehring, S. Schlie-Wolter, B.N. Chichkov, Hyaluronic acid based materials for scaffolding via two-photon polymerization. Biomacromolecules 15, 650–659 (2014). https://doi.org/10.1021/bm401712q

    Article  Google Scholar 

  109. P.S. Timashev et al., Compatibility of cells of the nervous system with structured biodegradable chitosan-based hydrogel matrices. Appl. Biochem. Microbiol. 52, 508–514 (2016). https://doi.org/10.1134/s0003683816050161

    Article  Google Scholar 

  110. O. Kufelt et al., Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization. Acta Biomater. 18, 186–195 (2015). https://doi.org/10.1016/j.actbio.2015.02.025

    Article  Google Scholar 

  111. D.S. Correa, P. Tayalia, G. Cosendey, D.S. dos Santos Jr., R.F. Aroca, E. Mazur, C.R. Mendonca, Two-photon polymerization for fabricating structures containing the biopolymer chitosan. J. Nanosci. Nanotechnol. 9, 5845–5849 (2009)

    Article  Google Scholar 

  112. A. Ovsianikov et al., Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater. 7, 967–974 (2011). https://doi.org/10.1016/j.actbio.2010.10.023

    Article  Google Scholar 

  113. M. Malinauskas et al., 3D artificial polymeric scaffolds for stem cell growth fabricated by femtosecond laser. Lith. J. Phys. 50, 75–82 (2010). https://doi.org/10.3952/lithjphys.50121

    Article  Google Scholar 

  114. T. Honegger, T. Elmberg, K. Berton, D. Peyrade, Visible microlaser two-photon polymerization in a microfludic cell: A resist study. Microel. Engin. 88, 2725–2728 (2011). https://doi.org/10.1016/j.mee.2010.12.094

    Article  Google Scholar 

  115. W.D. Zhang, S.C. Chen, Femtosecond laser nanofabrication of hydrogel biomaterial. MRS Bull. 36, 1028–1033 (2011). https://doi.org/10.1557/mrs.2011.275

    Article  Google Scholar 

  116. W.D. Zhang, P. Soman, K. Meggs, X. Qu, S.C. Chen, Tuning the Poisson’s ratio of biomaterials for investigating cellular response. Adv. Funct. Mater. 23, 3226–3232 (2013). https://doi.org/10.1002/adfm.201202666

    Article  Google Scholar 

  117. J. Xing et al., A water soluble initiator prepared through host-guest chemical interaction for microfabrication of 3D hydrogels via two-photon polymerization. J. Mater. Chem. B 2, 4318–4323 (2014). https://doi.org/10.1039/c4tb00414k

    Article  Google Scholar 

  118. Z. Li et al., A straightforward synthesis and structure–activity relationship of highly efficient initiators for two-photon polymerization. Macromolecules 46, 352–361 (2013). https://doi.org/10.1021/ma301770a

    Article  Google Scholar 

  119. R. Nazir, P. Danilevicius, D. Gray, M. Farsari, D.T. Gryko, Push-pull acyl-phosphine oxides for two-photon-induced polymerization. Macromolecules 46, 7239–7244 (2013)

    Article  Google Scholar 

  120. R. Nazir et al., π-expanded keto-coumarins as efficient, biocompatible initiators for two-photon induced polymerization. Chem. Mater. 26(10), 3175–3184 (2014). https://doi.org/10.1021/cm500612w

    Article  Google Scholar 

  121. Z.Q. Li et al., Initiation efficiency and cytotoxicity of novel water-soluble two-photon photoinitiators for direct 3D microfabrication of hydrogels. RSC Adv. 3, 15939–15946 (2013). https://doi.org/10.1039/c3ra42918k

    Article  Google Scholar 

  122. R. Nazir et al., π-Expanded α,β-unsaturated ketones: synthesis, optical properties, and two-photon-induced polymerization. ChemPhysChem 16(3), 682–690 (2015). https://doi.org/10.1002/cphc.201402646

    Article  Google Scholar 

  123. R. Nazir et al., Donor–acceptor type Thioxanthones: synthesis, optical properties, and two-photon induced polymerization. Macromolecules 48, 2466–2472 (2015). https://doi.org/10.1021/acs.macromol.5b00336

    Article  Google Scholar 

  124. W.-E. Lu, X.-Z. Dong, W.-Q. Chen, Z.-S. Zhao, X.-M. Duan, Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced Photopolymerization. J. Mater. Chem. 21, 5650–5659 (2011)

    Article  Google Scholar 

  125. R. Nazir et al., π-Expanded 1, 3-diketones–synthesis, optical properties and application in two-photon polymerization. J. Mater. Chem. C 4, 167–177 (2016)

    Article  Google Scholar 

  126. Sun, H.-B. & Kawata, S. in Twophoton Photopolymerization and 3D Lithographic Microfabrication, ed. by N. Fatkullin. NMR. 3D Analysis. Photopolymerization, vol 170 (Springer, Berlin, 2004), pp. 169–273

    Google Scholar 

  127. B. Bhuian, R.J. Winfield, S. O’Brien, G.M. Crean, Investigation of the two-photon polymerisation of a Zr-based inorganic–organic hybrid material system. Appl. Surf. Sci. 252, 4845–4849 (2006)

    Article  Google Scholar 

  128. R. Langer, J. Vacanti, P. Tissue engineering. Science 260, 920–926 (1993). https://doi.org/10.1126/science.8493529

    Article  Google Scholar 

  129. D.E. Discher, P. Janmey, Y.-L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005). https://doi.org/10.1126/science.1116995

    Article  Google Scholar 

  130. A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). https://doi.org/10.1016/j.cell.2006.06.044

    Article  Google Scholar 

  131. M.J. Dalby et al., Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomaterials 24, 927–935 (2003). https://doi.org/10.1016/S0142-9612(02)00427-1

    Article  Google Scholar 

  132. M.J. Dalby et al., Nanomechanotransduction and interphase nuclear organization influence on genomic control. J. Cell. Biochem. 102, 1234–1244 (2007). https://doi.org/10.1002/jcb.21354

    Article  Google Scholar 

  133. M.J. Dalby et al., Increasing fibroblast response to materials using nanotopography: Morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp. Cell Res. 276, 1–9 (2002). https://doi.org/10.1006/excr.2002.5498

    Article  Google Scholar 

  134. V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005). https://doi.org/10.1016/j.biomaterials.2005.02.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Farsari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Terzaki, K., Farsari, M. (2018). Polymer Processing Through Multiphoton Absorption. In: Van Hoorick, J., Ottevaere, H., Thienpont, H., Dubruel, P., Van Vlierberghe, S. (eds) Polymer and Photonic Materials Towards Biomedical Breakthroughs. Micro- and Opto-Electronic Materials, Structures, and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-75801-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75801-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75800-8

  • Online ISBN: 978-3-319-75801-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics