Skip to main content
Log in

Femtosecond Two-Photon Photopolymerization—Creating 3D Microstructures for Optical Applications

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

We studied the physical principles of creating 3D microstructures using the method of femtosecond two-photon photopolymerization. We present 3D microstructures of complex topology and demonstrate a wide range of optical applications: elements of photonic integrated circuits, a new generation of micro-optical devices, elements of X-ray optics, and devices with single-photon sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Satoshi, K., Hong-Bo, S., Tomokazu, T., and Kenji, T., Nature, 2001, vol. 412, p. 697.

    Article  Google Scholar 

  2. Pao, Y.H. and Rentzepis, P.M., Appl. Phys. Lett., 1965, vol. 6, no. 5, p. 93.

    Article  ADS  Google Scholar 

  3. Thiele, S., Arzenbacher, K., Gissibl, T., et al., Sci. Adv., 2017, vol. 3, no. 2, p. e1602655.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  4. Shcherbakov, D.A., Kolymagin, D.A., Matital, R.P., et al., J. Russ. Laser Res., 2023, vol. 44, p. 47.

    Article  CAS  Google Scholar 

  5. Vitukhnovsky, A.G., Zvagelsky, R.D., Kolymagin, D.A., et al., Opt. Spectrosc., 2019, vol. 126, p. 54.

    Article  CAS  ADS  Google Scholar 

  6. Gehring, H., Eich, A., and Schuck, C., Pernicew, Opt. Lett., 2019, vol. 44, p. 5089.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Vitukhnovsky, A.G., Zvagelsky, R.D., Kolymagin, D.A., et al., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, p. 760.

    Article  CAS  Google Scholar 

  8. Lindenmann, N., Dottermusch, S., Goedecke, M., et al., J. Lightwave Technol., 2015, vol. 33, no. 4, p. 755.

    Article  CAS  ADS  Google Scholar 

  9. Schumann, M., Buckmann, T., Gruhler, N., et al., Light: Sci. Appl., 2014, vol. 3, no. 6.

  10. Kurtsiefer, C., Mayer, S., Zarda, P., and Weinfurter, H., Phys. Rev. Lett., 2000, vol. 85, p. 290.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Jelezko, F. and Wrachtrup, J., Phys. Status Solidi A, 2006, vol. 203, p. 3207.

    Article  CAS  ADS  Google Scholar 

  12. Aharonovich, I., Castelletto, S., Simpson, D.A., et al., Rep. Prog. Phys., 2011, vol. 74, p. 076501.

    Article  ADS  Google Scholar 

  13. Barclay, P.E., Santori, C., Fu, K.-M., Beausoleil, R.G., and Painter, O., Opt. Express, 2009, vol. 17, p. 8081.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Hausmann, B.J.M., Shields, B., Quan, Q., et al., Nano Lett., 2012, vol. 12, p. 1578.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Wolters, J., Schell, A.W., Kewe, G., et al., Appl. Phys. Lett., 2010, vol. 97, p. 141108.

    Article  ADS  Google Scholar 

  16. Van der Sar, T., Hagemeier, J., Pfaff, W., et al., Appl. Phys. Lett., 2011, vol. 98, p. 193103.

    Article  ADS  Google Scholar 

  17. Riedrich-Möller, J., Kipfstuhl, L., Hepp, C., et al., Nat. Nano, 2012, vol. 7, p. 69.

    Article  Google Scholar 

  18. Fu, K.-M.C., Santori, C., Barclay, P.E., et al., Appl. Phys. Lett., 2008, vol. 93, p. 234107.

    Article  ADS  Google Scholar 

  19. Schröder, T., Schell, A. W., Kewes, G., Aichele, T., and Benson, O., Nano Lett., 2011, vol. 11, p. 198.

    Article  PubMed  ADS  Google Scholar 

  20. Schröder, T., Fujiwara, M. Noda, T., et al., Opt. Express, 2012, vol. 20, p. 10490.

    Article  PubMed  ADS  Google Scholar 

  21. Henderson, M.R., Gibson, B.C., Ebendorff-Heidepriem, H., et al, Adv. Mater., 2011, vol. 23, p. 2772.

    Article  Google Scholar 

  22. Schell, A.W., Kaschke, J., Fischer, J., et al., Sci. Rep., 2013, vol. 3, p. 1577.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Matital, R.P., Kolymagin, D.A., Chubich, D.A., Merkushev, D.D., and Vitukhnovsky, A.G., J. Sci.: Adv. Mater. Devices, 2022, vol. 7, no. 2, p. 100413.

    CAS  Google Scholar 

  24. Egorov, A.E., Kolymagin, D., Vitukhnovsky, A., et al., Polymers, 2023, vol. 15, no. 1, p. 71.

    Article  CAS  Google Scholar 

  25. Gritsienko, A.V., Duleba, A.I., Vitukhnovsky, A.G., et al., Nanomaterials, 2022, vol. 2, no. 24, p. 4495.

    Article  Google Scholar 

  26. Pisarenko, A.V., Zvagelsky, R.D., Kolymagin, D.A., Katanchiev, B.V., Vitukhnovsky, A.G., and Chubich, D.A., Optik, 2020, vol. 201, p. 163350.

    Article  ADS  Google Scholar 

  27. Zhiganshina, E.R., Arsenyev, M.V., Chubich, D.A., Kolymagin, D.A., Pisarenko, A.V., Burkatovsky, D.S., and Chesnokov, S.A., Eur. Polym. J., 2022, vol. 162, p. 110917.

  28. Sharipova, M.I., Baluyan, T.G., Abrashitova, K.A., Kulagin, G.E., Petrov, A.K., Chizhov, A.S., Shatalova, T.B., Chubich, D.A., Kolymagin, D.A., Vitukhnovsky, A.G., Bessonov, V.O., and Fedyanin, A.A., Opt. Mater. Express, 2021, vol. 11, p. 371.

    Article  ADS  Google Scholar 

Download references

Funding

Research of microoptical devices—arrays of microlenses were carried out with the support of the Russian Science Foundation (project no. 22-79-10153.) Research related to X-ray optics was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation, scientific project 15.SIN.21.0008 (Agreement no. 075-11-2021-086). The development of a single-beam optical 3D lithography system that overcomes diffraction limit is carried out in accordance with the Agreement on the provision of subsidies from the federal budget no. 075-02-2022-1672. The creation and study of 3D microstructures in combination with sources of single (Fock) photons and optical cavities was supported by the Russian Science Foundation (project no. 22-19-00324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Vitukhnovsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitukhnovsky, A.G., Kolymagin, D.A., Gritsienko, A.V. et al. Femtosecond Two-Photon Photopolymerization—Creating 3D Microstructures for Optical Applications. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 1), S87–S92 (2023). https://doi.org/10.3103/S1062873823704452

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823704452

Keywords:

Navigation