Skip to main content
Log in

Formation of Negative Hydrogen Ions in a Ne–H2 Hollow Cathode Discharge

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The formation of negative hydrogen ions in a conventional hollow cathode discharge has been investigated. A mixture of Ne and H2 proved to be more advantageous compared to pure hydrogen. The study has been performed by solving the electron Boltzmann equation, coupled with a system of balance equations for neon and hydrogen neutral and charged particles. The vibrational distribution function of hydrogen has been calculated. Our calculations show unusually high population of vibrationally excited hydrogen molecules in a Ne–H2 mixture, which explains the high density of negative hydrogen ions under optimal conditions (total gas pressure of few Torr, hydrogen number mole fraction of 1–10% and discharge current of 10–100 mA). Line intensities originating from highly excited neon states vs. hydrogen pressure have been calculated and a comparison with existing experimental results has been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Fukumasa and M. Matsumori, Jpn. J. Appl. Phys. 38, Part 1, 4581 (1999).

    Google Scholar 

  2. J. R. Hiskes and A. M. Karo, J. Appl. Phys. 56(7), 1927 (1984).

    Google Scholar 

  3. M. Bacal, A. M. Bruneteau, W. G. Graham, G. W. Hamilton, and M. Nachman, J. Appl. Phys. 52(3), 1247 (1981).

    Google Scholar 

  4. L. A. Pinnaduwage and L. G. Christophorou, J. Appl. Phys. 76(1), 46 (1994).

    Google Scholar 

  5. P. J. Enshuistra, M. Gochitashvilli, R. Becker, A. W. Kleyn, and H. J. Hopman, J. Appl. Phys. 67(1), 85 (1990).

    Google Scholar 

  6. M. Bacal and G. W. Hamilton, Phys. Rev. Lett 47, 1538 (1979).

    Google Scholar 

  7. J. R. Hiskes and A. M. Karo, Nonequilibrium Processes in Partially Ionized Gases, Plenum Press, New York, 517 (1990).

    Google Scholar 

  8. A. A. Mullan and W. G. Graham, J. Phys. D 24, 1533 (1991).

    Google Scholar 

  9. A. M. Bruneteau, G. Hollos, M. Bacal, and J. Bretagne, J. Appl. Phys. 67(12), 7254 (1990).

    Google Scholar 

  10. A. Al-Jibouri, A. J. Holmes, and W. G. Graham, Plasma Sources, Sci. Tech. 5, 401 (1996).

    Google Scholar 

  11. H.-M. Katsch and E. Quandt, J. Phys. D 25, 430 (1992).

    Google Scholar 

  12. M. Bacal, Nonequilibrium Processes in Partially Ionized Gases, Plenum Press, New York, 213 (1990).

    Google Scholar 

  13. P. A. Pogorelli and A. M. Shukhtin, Opt. Spectrosc. (USSR) 38, 134 (1975).

    Google Scholar 

  14. V. D. Dougar-Jabon, Phys. Scripta 63, 322 (2001).

    Google Scholar 

  15. P. G. Datskos and L. A. Pinnaduwage, Phys. Rev. A 55, 4131 (1997).

    Google Scholar 

  16. O. Fukumasa and S. Saeki, J. Phys. D 18, L21 (1985).

    Google Scholar 

  17. O. Fukumasa, J. Phys. D 22, 1668 (1989).

    Google Scholar 

  18. O. Fukumasa and S. Ohashi, Nonequilibrium Processes in Partially Ionized Gases, Plenum Press, New York, 505 (1990).

    Google Scholar 

  19. O. Fukumasa, J. Appl. Phys. 71(7), 3193 (1992).

    Google Scholar 

  20. C. Gorse, M. Capitelli, M. Bacal, J. Bretagne, and A. Laganà, Chem. Phys. 117, 177 (1987).

    Google Scholar 

  21. W. G. Graham, Plasma Sources Sci. Tech. 4, 281 (1995).

    Google Scholar 

  22. J. R. Hiskes and A. M. Karo, Nonequilibrium Processes in Partially Ionized Gases, Plenum Press, New York, 525 (1990).

    Google Scholar 

  23. P. Berlemont, D. A. Skinner, and M. Bacal, Rev. Sci. Instrum. 64, 2721 (1993).

    Google Scholar 

  24. M. Capitelli and C. Gorse, Nonequilibrium Processes in Partially Ionized Gases, Plenum Press, New York, 45 (1990).

    Google Scholar 

  25. C. Gorse, M. Capitelly, J. Bretagne, and M. Bacal, Chem. Phys. 93, 1 (1985).

    Google Scholar 

  26. N. P. Curran, M. B. Hopkins, D. Vender, and B. W. James, Plasma Sources Sci. Tech. 9, 169 (2000).

    Google Scholar 

  27. J. Amorim, J. Loureiro, G. Baravian, and M. Touzeau, J. Appl. Phys. 82(6), 2795 (1997).

    Google Scholar 

  28. J. L. Giuliani, V. A. Shamamian, R. E. Thomas, J. P. Apruzese, M. Milbrandon, R. A. Rudder, R. C. Hendry, and R. E. Robson, IEEE Trans. Plasma Sci. 27, 1317 (1999).

    Google Scholar 

  29. K. Hassouni, T. A. Grotjohn, and A. Gicquel, J. Appl. Phys. 86(1), 134 (1999).

    Google Scholar 

  30. K. Hassouni, A. Gicquel, M. Capitelli, and J. Loureiro, Plasma Sources Sci. Tech. 8, 494 (1999).

    Google Scholar 

  31. H. Rau, J. Phys. D 33, 3214 (2000).

    Google Scholar 

  32. P. André, J. Aubreton, M. F. Elchinger, P. Fauchais, and A. Lefort, Plasma Chem. Plasma Proc. 21, 83 (2001).

    Google Scholar 

  33. A. Lacoste, L. L. Alves, C. M. Ferreira, and G. Gousset, J. Appl. Phys. 88(6), 3170 (2000).

    Google Scholar 

  34. T. G. Beuthe and J.-S. Chang, Jpn. J. Appl. Phys. Part 1 38, 4576 (1999).

    Google Scholar 

  35. C.-H. Yang, K. Itoh, H. Tomita, and M. Obara, J. Appl. Phys. 78(1), 30 (1995).

    Google Scholar 

  36. G. M. Petrov, J. Phys. D 30, 67 (1997).

    Google Scholar 

  37. R. R. Arslanbekov, A. A. Kudryavtsev, and I. A. Movchan, Soviet Phys. Tech. Phys. 37, 620 (1992).

    Google Scholar 

  38. R. R. Arslanbekov, A. A. Kudryavtsev, and I. A. Movchan, Sov. Phys. Tech. Phys. 37, 1004 (1992).

    Google Scholar 

  39. R. R. Arslanbekov and A. A. Kudryavtsev, Phys. Rev. E 58(5), part B 6539 (1998).

    Google Scholar 

  40. S. Hashiguchi an M. Hasikuni, Jap. J. Appl. Phys. Part 1, 27(10), 2007 (1998).

    Google Scholar 

  41. N. B. Kolokolov, A. A. Kudryavtsev, and A. B. Blagoev, Phys. Scripta. 50, 371 (1994).

    Google Scholar 

  42. R. Winkler, J. Wilhelm, and S. I. Krasheninnikov, Annalen der Physik 39, 241 (1982).

    Google Scholar 

  43. J. Bretagne, G. Delouya, J. Godart, and V. Puech, J. Phys. D 14, 1225 (1981).

    Google Scholar 

  44. C. B. Opal, E. C. Beaty, and W. K. Peterson, Atomic Data 4(3), 209 (1972).

    Google Scholar 

  45. G. M. Petrov and R. Winkler, J. Phys. D 30, 53 (1997).

    Google Scholar 

  46. J. Loureiro and C. M. Ferreira, J. Phys. D 22, 1680 (1989).

    Google Scholar 

  47. A. Garscadden and R. Nagpal, Plasma Sources Sci. Tech. 4, 268 (1995).

    Google Scholar 

  48. J. Loureiro and A. Ricard, J. Phys. D 26, 163 (1993).

    Google Scholar 

  49. M. Capitelli, C. Gorse, J. Wilhelm, and R. Winkler, Nuovo Cimento 70, 163 (1982).

    Google Scholar 

  50. R. Winkler, J. Wilhelm, S. I. Krasheninnikov, and V. V. Starykh, Annalen der Physik 39, 216 (1982).

    Google Scholar 

  51. M. Cacciatore, Nonequilibrium Processes in Partially Ionized Gases, Plenum Press, New York, 485 (1990).

    Google Scholar 

  52. S. J. Buckman and A. V. Phelps, JILA Information Center Report N. 27 (1985).

  53. H. Tawara, Y. Itikawa, H. Nishimura, and M. Yoshino, J. Phys. Chem. Ref. Data 19, 617 (1990).

    Google Scholar 

  54. C. Mündel, M. Berman, and W. Domcke, Phys. Rev. A 32, 181 (1985).

    Google Scholar 

  55. A. U. Hazi, Phys. Rev. A 23, 2232 (1981).

    Google Scholar 

  56. W. T. Miles, R. Thompson and A. E. S. Green, J. Appl. Phys. 43(2), 678 (1972).

    Google Scholar 

  57. J. R. Hiskes, J. Appl. Phys. 51(9), 4592 (1980).

    Google Scholar 

  58. G. D. Billing, Chem. Phys. 43, 395 (1979).

    Google Scholar 

  59. V. L. Orkin, V. G. Fedotov, and A. M. Chaikin, Kinetics and Catalysis 18, 41 (1977).

    Google Scholar 

  60. G. Black, H. Wise, S. Schechter, and R. L. Sharpless, J. Chem. Phys. 60, 3526 (1974).

    Google Scholar 

  61. M. Yamane, J. Chem. Phys. 49, 4624 (1968).

    Google Scholar 

  62. E. Graham IV, D. R. James, W. C. Keever, I. R. Gatland, D. L. Albritton, and E. W. McDaniel, J. Chem. Phys. 59, 4648 (1973).

    Google Scholar 

  63. V. Aquilanti, A. Galli, A. Giardini-Guidoni, and G. G. Volpi, J. Chem. Phys. 43, 1969 (1965).

    Google Scholar 

  64. S. Laube, A. Le Padellec, O. Sidko, C. Rebrion-Rowe, J. B. A. Mitchell, and B. R. Rowe, J. Phys. B 31, 2111 (1998).

    Google Scholar 

  65. K. Hiraoka and P. Kebarle, J. Chem. Phys. 63, 746 (1975).

    Google Scholar 

  66. U. A. Arifov, S. L. Pozharov, I. G. Chernov, and Z. A. Mukhamediev, X-th ICPIG 71, Oxford, 11 (1971).

  67. T. F. Moran and L. Friedman, J. Chem. Phys. 39, 2491 (1963).

    Google Scholar 

  68. K. R. Ryan and I. G. Graham, J. Chem. Phys. 59, 4260 (1973).

    Google Scholar 

  69. H. W. Ellis, R. Y. Pal, E. W. McDaniel, E. A. Mason, and L. A. Viehland, Atomic Data Nuclear Data Tables 17, 177 (1976).

    Google Scholar 

  70. E. W. McDaniel and E. A. Mason, The mobility and diffusion of ions in gases, New York, John Wiley & Sons (1973).

    Google Scholar 

  71. F. Brouillard and J. W. McCowan, Physics of ion and electron-ion collisions, Plenum Press, New York and London (1983).

    Google Scholar 

  72. D. F. Register, S. Trajmar, G. Steffensen, and D. C. Cartwright, Phys. Rev. A 29, 1793 (1984).

    Google Scholar 

  73. R. S. Freund, R. C. Wetzel, R. J. Shul, and T. R. Hayes, Phys. Rev. A 41, 3575 (1990).

    Google Scholar 

  74. L. Vriens and A. H. M. Smeets, Phys. Rev. A 22(3), 940 (1980).

    Google Scholar 

  75. A. L. Zagrebin and E. P. Permogorova, Sov. Phys. Tech. Phys. 62, 44 (1992).

    Google Scholar 

  76. M. Allan and S. F. Wong, Phys. Rev. Lett. 41, 1791 (1978).

    Google Scholar 

  77. J. P. Gauyacq, J. Phys. B 18, 1859 (1985).

    Google Scholar 

  78. A. P. Hickman, Phys. Rev. A 43, 3495 (1991).

    Google Scholar 

  79. J. M. Wadehra and J. N. Bardsley, Phys. Rev. Lett. 41, 1795 (1978).

    Google Scholar 

  80. J. N. Bardsley and J. M. Wadehra, Phys. Rev. A 20, 1398 (1979).

    Google Scholar 

  81. I. S. Yelets and A. K. Kazansky, XIII-th International Conference on the Physics of Electronic and Atomic Collisions, Berin, 287 (1983).

  82. L. A. Pinnaduwage and L. G. Christophorou, Phys. Rev. Lett. 70, 754 (1993).

    Google Scholar 

  83. L. A. Pinnaduwage, W. X. Ding, W. L. McCorkle, C. H. Lin, A. M. Mebel, and A. Garscadden, J. Appl. Phys. 85(10), 7064 (1999).

    Google Scholar 

  84. K. Hassouni, A. Gicquel, and M. Capitelli, Chem. Phys. Lett. 290, 502 (1998).

    Google Scholar 

  85. J. R. Peterson, W. A. Aberth, J. T. Moseley, and J. R. Sheridan, Phys. Rev. A 3, 1651 (1971).

    Google Scholar 

  86. M. S. Huq, L. D. Doverspike, and R. L. Champion, Phys. Rev. A 27, 2831 (1983).

    Google Scholar 

  87. B. Peart, D. S. Walton, and K. T. Dolder, J. Phys. B 3, 1346 (1970).

    Google Scholar 

  88. J. O. Hirschfelder, C. E. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons, New York (1954).

    Google Scholar 

  89. A. D. Tserepi and T. A. Miller, J. Appl. Phys. 75, 7231 (1994).

    Google Scholar 

  90. M. Rutigliano, M. Cacciatore, and G. D. Billing, Chem. Phys. Lett. 340, 13 (2001).

    Google Scholar 

  91. G. M. Petrov, J. P. Matte, I. Peres, J. Margot, T. Sadi, J. Hubert, K. C. Tran, L. Alves, J. Loureiro, C. M. Ferreira, and G. Gousset, Plasma Chem. Plasma Proc. 20, 183 (2000).

    Google Scholar 

  92. V. Mihailov, V. Gencheva, and R. Djulgerova, J. Phys. D: Appl. Phys. 34, 2185 (2001).

    Google Scholar 

  93. H. W. Drawin, Z. Physik 225, 483 (1969).

    Google Scholar 

  94. P. F. Gruzdev, Transition probabilities and radiative lifetimes of atoms and ions, Moskva, Energoatomizdat (1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, G.M., Petrova, T. Formation of Negative Hydrogen Ions in a Ne–H2 Hollow Cathode Discharge. Plasma Chemistry and Plasma Processing 22, 573–605 (2002). https://doi.org/10.1023/A:1021323714026

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021323714026

Navigation