Skip to main content
Log in

Local Plasma Parameters, Atom Concentrations, and Absolute Luminescence Intensities in the Discharge Supported by a Hollow Cathode

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Local measurements of the parameters of the electronic component, the space potential, and the absolute luminosities of the nonequilibrium discharge plasma in wet low-pressure helium supported by the hollow cathode are performed. The concentrations of helium and hydrogen atoms in the ground states are determined from the intensities of the transition lines between the excited levels using the coronal model (CM), which takes into account the branching of electronic transitions from the excitation levels of atoms and the final optical density of the plasma. It is shown that the proposed refinement of the CM under these conditions makes it possible to select a number of spectral lines that allow one to determine the concentrations of helium atoms in the ground state by measuring the absolute intensities of electronic transition radiations. The possibility of using correlations of the calculated temperature of electrons with the effective temperatures of population and distribution of excited atoms is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. V. Bernatskiy, V. N. Ochkin, O. N. Afonin, and A. B. Antipenkov, Plasma Phys. Rep. 41, 705 (2015). https://doi.org/10.1134/S1063780X15090032

    Article  ADS  Google Scholar 

  2. O. N. Afonin, V. N. Ochkin, S. Yu. Savinov, and S. N. Tskhai, RF Patent No. 2494362 (September 27, 2013).

  3. A. V. Bernatskiy, I. V. Kochetov, and V. N. Ochkin, Plasma Phys. Rep. 46, 874 (2020). https://doi.org/10.1134/S1063780X20090020

    Article  ADS  Google Scholar 

  4. A. V. Bernatskiy, I. V. Kochetov, and V. N. Ochkin, Plasma Sources Sci. Technol. 28, 105002 (2019). https://doi.org/10.1088/1361-6595/ab4301

  5. A. V. Bernatskiy, I. V. Kochetov, and V. N. Ochkin, J. Phys. D: Appl. Phys. 49, 395204 (2016). https://doi.org/10.1088/0022-3727/49/39/395204

  6. A. V. Bernatskiy and V. N. Ochkin, Plasma Sources Sci. Technol. 26, 015002 (2017). https://doi.org/10.1088/0963-0252/26/1/015002

  7. S. N. Andreev, A. V. Bernatskiy, N. A. Dyatko, I. V. Kochetov, and V. N. Ochkin, Plasma Sources Sci. Technol. 30, 095004 (2021). https://doi.org/10.1088/1361-6595/ac1ee2

  8. S. N. Andreev, A. V. Bernatskiy, and V. N. Ochkin, Vacuum 180, 109616 (2020). https://doi.org/10.1016/j.vacuum.2020.109616

  9. S. N. Andreev, A. V. Bernatskiy, and V. N. Ochkin, Plasma Chem. Plasma Process. 41, 659 (2021). https://doi.org/10.1007/s11090-020-10137-4

    Article  Google Scholar 

  10. V. N. Ochkin, Spectroscopy of Low-Temperature Plasma (Fizmatlit, Moscow, 2006; Willey-VCH, Weinheim, 2009).

  11. R. Peverall and G. A. D. Ritchie, Plasma Sources Sci. Technol. 28, 073002 (2019). https://doi.org/10.1088/1361-6595/ab2956

  12. V. I. Demidov, M. E. Koepke, I. P. Kurlyandskaya, and M. A. Malkov, Phys. Plasmas 27, 020501 (2020). https://doi.org/10.1063/1.5127749

  13. V. A. Godyak and B. M. Alexandrovich, J. Appl. Phys. 118, 233302 (2015). https://doi.org/10.1063/1.4937446

  14. V. A. Godyak and V. I. Demidov, J. Phys. D: Appl. Phys. 44, 233001 (2011). https://doi.org/10.1088/0022-3727/44/23/233001

  15. K. V. Rudenko, A. V. Myakon’kikh, A. A. Orlikovsky, and A. N. Pustovit, Russ. Microelectron. 36, 14 (2007). https://doi.org/10.1134/S1063739707010027

    Article  Google Scholar 

  16. S. N. Andreev, A. V. Bernatskiy, and V. N. Ochkin, Vacuum 206, 111514 (2022). https://doi.org/10.1016/j.vacuum.2022.111514

  17. S. N. Andreev, A. V. Bernatskiy, and V. N. Ochkin, J. Appl. Spectrosc. 88, 289 (2021). https://doi.org/10.1007/s10812-021-01171-x

    Article  ADS  Google Scholar 

  18. S. N. Andreev, A. V. Bernatskiy, and V. N. Ochkin, Phys. At. Nucl. 84, 1757 (2021). https://doi.org/10.1134/S1063778821090039

    Article  Google Scholar 

  19. J. D. Swift, Proc. Phys. Soc. 79, 697 (1962). https://doi.org/10.1088/0370-1328/79/4/303

    Article  ADS  Google Scholar 

  20. A. I. Lukovnikov and M. Z. Novgorodov, Kratk. Soobshch. Fiz., No. 1, 27 (1971).

  21. S. N. Andreev, A. V. Bernatskiy, N. A. Dyatko, I. V. Kochetov, and V. N. Ochkin // Plasma Sources Science and Technology. https://doi.org/10.1088/1361-6595/ac9750

  22. Y. B. Golubovskii and S. H. al Hawat, Sov. Phys.–Tech. Phys. 32, 25 (1987).

    Google Scholar 

  23. Yu. A. Ivanov, Yu. A. Lebedev, and L. S. Polak, Contact Diagnostics in Nonequilibrium Plasma Chemistry (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  24. V. I. Demidov, N. B. Kolokolov, and A. A. Kudryavtsev, Probe Diagnostics of Low-Temperature Plasmas (Energoatomizdat, Moscow, 1996) [in Russian].

    Google Scholar 

  25. N. A. Dyatko, I. V. Kochetov, and V. N. Ochkin, Plasma Sources Sci. Technol. 29, 125007 (2020). https://doi.org/10.1088/1361-6595/abc412

  26. N. A. Dyatko, I. V. Kochetov, and V. N. Ochkin, Phys. Rev. E 104, 065204 (2021). https://doi.org/10.1103/PhysRevE.104.065204

  27. Y. Itikawa and N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005). https://doi.org/10.1063/1.1799251

    Article  ADS  Google Scholar 

  28. D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965). https://doi.org/10.1063/1.1696957

    Article  ADS  Google Scholar 

  29. NIST Atomic Spectra Database Lines Data. https://physics.nist.gov/PhysRefData/ASD/lines_form.html. Cited July 30, 2022.

  30. Biagi (transcription of data from SF Biagi’s Fortran code, Magboltz). http://www.lxcat.net/contributors/#d6. Cited July 30, 2022.

  31. V. N. Ochkin, Phys.–Usp. 65, 2022 (in press). https://doi.org/10.3367/UFNe.2021.07.039026

  32. B. P. Lavrov and A. V. Pipa, Opt. Spectrosc. 92, 647 (2002). https://doi.org/10.1134/1.1481126

    Article  ADS  Google Scholar 

  33. H. W. Drawin, Report EUR-CEA-FC-383 (Association EURATOM-C.E.A., Fountenay-aux-Roses, 1967). www.lxcat.net.

  34. I. I. Sobel’man, L. A. Vainstein, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Nauka, Moscow, 1979; Springer-Verlag, Berlin, 1981).

  35. V. P. Zhdanov and M. I. Chibisov, Sov. Phys.–JETP 47, 38 (1978).

    ADS  Google Scholar 

  36. D. Wunderlich and U. Fantz, Atoms 4, 26 (2016). https://doi.org/10.3390/atoms4040026

    Article  ADS  Google Scholar 

  37. D. X. Liu, P. Bruggeman, F. Iza, M. Z. Rong, and M. G. Kong, Plasma Sources Sci. Technol. 19, 025018 (2010). https://doi.org/10.1088/0963-0252/19/2/025018

  38. M. J. McEwan and L. F. Phillips, Chemistry of the Atmosphere (Halsted, New York, 1975).

    Google Scholar 

  39. V. M. Baev, T. Latz, and P. E. Toshek, Appl. Phys. B 69, 171 (1999). https://doi.org/10.1007/s003400050793

    Article  ADS  Google Scholar 

  40. M. Aramaki, Y. Okumura, M. Goto, S. Muto, S. Morita, and K. Sasaki, Jpn. J. Appl. Phys. 44, 6759 (2005). https://doi.org/10.1143/JJAP.44.6759

    Article  ADS  Google Scholar 

  41. A. Rousseau, E. Teboul, and N. Sadeghi, Plasma Sources Sci. Technol. 13, 166 (2004). https://doi.org/10.1088/0963-0252/13/1/022

    Article  ADS  Google Scholar 

  42. S. Wu, H. Inoue, M. Kambara, and T. Yoshida, Jpn. J. Appl. Phys. 52, 071301 (2013). https://doi.org/10.7567/JJAP.52.071301

Download references

ACKNOWLEDGMENTS

The authors are grateful to N.A. Dyatko and V.V. Lagunov for their assistance in conducting the experiments and for taking part in the discussion of the results.

Funding

This study was supported by the Russian Science Foundation within project no. 19-12-00310.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Bernatskiy, I. V. Kochetov or V. N. Ochkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, S.N., Bernatskiy, A.V., Draganov, I.I. et al. Local Plasma Parameters, Atom Concentrations, and Absolute Luminescence Intensities in the Discharge Supported by a Hollow Cathode. Plasma Phys. Rep. 48, 1273–1287 (2022). https://doi.org/10.1134/S1063780X22601043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22601043

Keywords:

Navigation