Skip to main content
Log in

A High Order Formula to Approximate the Caputo Fractional Derivative

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We present here a high-order numerical formula for approximating the Caputo fractional derivative of order \(\alpha\) for \(0<\alpha<\)1. This new formula is on the basis of the third degree Lagrange interpolating polynomial and may be used as a powerful tool in solving some kinds of fractional ordinary/partial differential equations. In comparison with the previous formulae, the main superiority of the new formula is its order of accuracy which is \(4-\alpha ,\) while the order of accuracy of the previous ones is less than 3. It must be pointed out that the proposed formula and other existing formulae have almost the same computational cost. The effectiveness and the applicability of the proposed formula are investigated by testing three distinct numerical examples. Moreover, an application of the new formula in solving some fractional partial differential equations is presented by constructing a finite difference scheme. A PDE-based image denoising approach is proposed to demonstrate the performance of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  2. Brunner, H., Han, H., Yin, D.: Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain. J. Comput. Phys. 276, 541–562 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burden, R., Faires, J.D.: Numerical Analysis, 9th edn. Brooks/Cole, Boston (2011)

    MATH  Google Scholar 

  4. Cao, J., Li, C., Chen, Y.: High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II). Fract. Calc. Appl. Anal. 18, 735–761 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, J., Xu, C., Wang, Z.: A high order finite difference/spectral approximations to the time fractional diffusion equations. Adv. Mater. Res. 875, 781785 (2014)

    Google Scholar 

  6. Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38(5), A3070–A3093 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, W.H., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations. Math. Model. Numer. Anal. 47, 1845–1864 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, W.H., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional ordinary differential equations. BIT 55(4), 967–985 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  11. Dimitrov, Y.: Three-point approximation for Caputo fractional derivative. Commun. Appl. Math. Comput. 31(4), 413–442 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gonzalez, R., Woods, R.: Digital Image Processing, 2nd edn. Prentice Hall, New York (2001)

    Google Scholar 

  14. Guo, Z., Sun, J., Zhang, D., Wu, B.: Adaptive Perona-Malik model based on the variable exponent for image denoising. IEEE Trans. Image Process. 21, 958–967 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  16. Langlands, T., Henry, B.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, S.H., Seo, J.K.: Noise removal with Gauss curvature-driven diffusion. IEEE Trans. Image Process. 14, 904–909 (2005)

    Article  MathSciNet  Google Scholar 

  18. Li, C., Chen, A., Ye, J.: Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230, 3352–3368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Perona, P., Malik, J.: Scale-space and edge detection using an isotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  24. Roop, J.P.: Computational aspect of FEM approximation of fractional advection dispersion equation on bounded domains in \(R^2\). J. Comput. Appl. Math. 193(1), 243–268 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 52(1), 405–423 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yeganeh, S., Mokhtari, R., Hesthaven, J.S.: Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method. BIT Numer. Math. 57(3), 685–707 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhuang, P., Gu, Y.T., Liu, F., Turner, I., Yarlagadda, P.K.D.V.: Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method. Int. J. Numer. Methods Eng. 88, 1346–1362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mokhtari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, R., Mostajeran, F. A High Order Formula to Approximate the Caputo Fractional Derivative. Commun. Appl. Math. Comput. 2, 1–29 (2020). https://doi.org/10.1007/s42967-019-00023-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-00023-y

Keywords

Mathematics Subject Classification

Navigation