Skip to main content
Log in

Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper is devoted to determining a space-dependent source term in an inverse problem of the time-fractional diffusion equation. We use a method based on a finite difference scheme in time and a local discontinuous Galerkin method in space and investigate the numerical stability and convergence of the proposed method. Finally, various numerical examples are used illustrate the effectiveness and accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boyd, S., Vandenbergh, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  2. Cheng, J., Nakagawa, J., Yamamoto, M., Yamazaki, T.: Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Probl. 25, 115002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Kanschat, G., Perugia, I., Schotzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, W.H., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations. Math. Model. Numer. Anal. 47, 1845–1864 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, W., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional ordinary differential equations. BIT 55(4), 967–985 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geng, F.Z., Lin, Y.Z.: Application of the variational iteration method to inverse heat source problems. Comput. Math. Appl. 58(11–12), 2098–2102 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hansen, P.C.: The discrete Picard condition for discrete ill-posed problems. BIT 30, 658–672 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hansen, P.C.: Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms 6, 1–35 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, Y.J., Ma, J.T.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235(11), 3285–3290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, C.Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, J.J., Yamamoto, M.: A backward problem for the time-fractional diffusion equation. Appl. Anal. 89, 1769–1788 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Murio, D.A.: Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math. Appl. 53, 1492–1501 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Murio, D.A.: Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl. 56, 2371–2381 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Murio, D.A.: Stable numerical evaluation of Grünwald–Letnikov fractional derivatives applied to a fractional IHCP. Inverse Probl. Sci. Eng. 17, 229–243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qian, Z.: Optimal modified method for a fractional-diffusion inverse heat conduction problem. Inverse Probl. Sci. Eng. 18, 521–533 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Riviére, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Rice University, Houston (2008)

    Book  MATH  Google Scholar 

  21. Rundell, W., Xu, X., Zuo, L.H.: The determination of an unknown boundary condition in a fractional diffusion equation. Appl. Anal. 92, 1–16 (2012)

    MathSciNet  Google Scholar 

  22. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shidfar, A., Babaei, A., Molabahrami, A.: Solving the inverse problem of identifying an unknown source term in a parabolic equation. Comput. Math. Appl. 60(5), 1209–1213 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tuan, V.K.: Inverse problem for fractional diffusion equation. Fract. Calc. Appl. Anal. 14, 31–55 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wei, H., Chen, W., Sun, H.G., Li, X.C.: A coupled method for inverse source problem of spatial fractional anomalous diffusion equations. Inverse Probl. Sci. Eng. 18, 945–956 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, J.G., Zhou, Y.B., Wei, T.: Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation. Appl. Numer. Math. 68, 39–57 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wei, T., Wang, J.G.: A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl. Numer. Math. 78, 95–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wei, L.L., Zhang, X.D., He, Y.N.: Analysis of a local discontinuous Galerkin method for time-fractional advection–diffusion equations. Int. J. Numer. Methods Heat Fluid Flow 23, 634–648 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wei, T., Zhang, Z.Q.: Reconstruction of a time-dependent source term in a time-fractional diffusion equation. Eng. Anal. Bound. Elem. 37, 23–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wei, T., Zhang, Z.Q.: Stable numerical solution to a Cauchy problem for a time fractional diffusion equation. Eng. Anal. Bound. Elem. 40, 128–137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 52(1), 405–423 (2014)

  32. Xu, Y., Shu, C.W.: Local discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Z.Q., Wei, T.: Identifying an unknown source in time-fractional diffusion equation by a truncation method. Appl. Math. Comput. 219, 5972–5983 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Zheng, G.H., Wei, T.: Spectral regularization method for a Cauchy problem of the time fractional advection–dispersion equation. J. Comput. Appl. Math. 233, 2631–2640 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zheng, G.H., Wei, T.: A new regularization method for Cauchy problem of the fractional diffusion equation. Adv. Comput. Math. 36, 377–398 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Mrs. S. Yeganeh wishes to express her appreciation for the warm hospitality she enjoyed during a visit to EPFL where part of this work was done. The authors also thank the anonymous reviewers for their thorough feedback which helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Hesthaven.

Additional information

Communicated by Lars Eldén.

Appendix

Appendix

Table 6 \(\parallel A_M^{-1}\parallel _2\) for different values of \(\alpha \)
Table 7 Norm 2 of some matrices for Example 4.2 for different \(\alpha \) with \(\varepsilon =0.01\) (top) and for different \(\varepsilon \) with \(\alpha =0.6\) (bottom)

We seek to explain why our proposed method need not regularization method. Consider the time-fractional diffusion equation (1.1), with \(a(x)=1\) and \(c(x)=0\) (as we consider in Examples 4.1 and 4.34.5). Let us decompose the domain of the problem into cells of equal length h and choose for local basis functions of \({\mathbb {P}}^1(I_j)\) the monomial basis functions [20]. Solving (3.4), we have

$$\begin{aligned} K_{11}= & {} K_{22}={\mathrm{diag}}\left( h,\frac{h}{3},\ldots ,h,\frac{h}{3}\right) ,\qquad {\bar{K}}_{12}={\bar{K}}_{21}={\mathrm{diag}}(Z,\ldots ,Z),\qquad \\ Z= & {} \left[ \begin{array}{cc}0&{}\quad 0\\ 2&{}\quad 0\end{array}\right] , \end{aligned}$$

therefore \({\bar{K}}_{12}K_{22}^{-1}{\bar{K}}_{21}K_{22}^{-1}=(0)_{2N\times 2N}\), \(K_m=I\) and

$$\begin{aligned} A_M F=G-\beta G_1+\beta {\bar{K}}_{12} K_{22}^{-1} G_2. \end{aligned}$$
(5.1)

\(A_M\) has a complex structure and we are not able to find a closed form for it. In Table 6, we report \(\parallel A_M^{-1}\parallel _2\) for different values of \(\alpha \). Obviously \(\parallel A_M^{-1}\parallel _2\) has a reasonable size and therefore in Examples 4.1 and 4.34.5 numerical solutions are not sensitive with respect to the perturbation in the initial data.

Fig. 6
figure 6

Picard plot for Example 4.2 (\(\alpha =0.1\))

Fig. 7
figure 7

Picard plot for Example 4.2 (\(\alpha =0.6\))

Fig. 8
figure 8

Picard plot for Example 4.2 (\(\alpha =0.95\))

In Table 7, we show \(L^2\)-norm of matrices G, \(A_M^{-1}G\) and \(A_M^{-1}\) for Example 4.2. Obviously, \(\parallel A_M^{-1} G^\delta \parallel _2\) is small and \(\parallel A_M^{-1} \parallel _2\) has a reasonable size. Therefore numerical solutions are not sensitive with respect to the perturbation in the initial data.

Therefore, we need not any regularization method.

The sequel of this appendix is devoted to investigating the discrete Picard condition [10] in order to show that our proposed method need not any regularization. Here we just investigate Example 4.2. Similar results obtain for Examples 4.34.5. We use the MATLAB codes developed by Hansen [11] to prepare Picard plots for both the unperturbed and the perturbed data with various noise levels \(\varepsilon =0.1, 1, 10\%\) which presented in Figs. 6, 7 and 8 for \(\alpha =0.1, 0.6, 0.95\), respectively. In all cases, the Fourier coefficients \(V_i^TR\) decay to zero faster than the \(\sigma _i\). Here, \((\sigma _i,V_i)\)’s are the pair of singular values and corresponding (left) singular vectors of matrix \(A_M\) and R is the right-hand side of the linear system which will be solved, i.e. \(A_MF=R:=K_M G-\beta G_1+\beta {\bar{K}}_{12} K_{22}^{-1} G_2\). Therefore, according to the discrete Picard condition, our method need not any regularization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeganeh, S., Mokhtari, R. & Hesthaven, J.S. Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method. Bit Numer Math 57, 685–707 (2017). https://doi.org/10.1007/s10543-017-0648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-017-0648-y

Keywords

Mathematics Subject Classification

Navigation