Skip to main content
Log in

An improved Yuan–Agrawal method with rapid convergence rate for fractional differential equations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Due to the merit of transforming fractional differential equations into ordinary differential equations, the Yuan and Agrawal method has gained a lot of research interests over the past decade. In this paper, this method is improved with major emphasis on enhancing the convergence rate. The key procedure is to transform fractional derivative into an improper integral, which is integrated by Gauss–Laguerre quadrature rule. However, the integration converges slowly due to the singularity and slow decay of the integrand. To solve these problems, we reproduce the integrand to circumvent the singularity and slow decay simultaneously. With the reproduced integrand, the convergence rate is estimated to be no slower than \( \, O(n^{ - 2} ) \) with \( n \) as the number of quadrature nodes. In addition, we utilize a generalized Gauss–Laguerre rule to further improve the accuracy. Numerical examples are presented to validate the rapid convergence rate of the improved method, without causing additional computational burden compared to the original approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hilfer R (2000) Applications of fractional calculus in physics. World Scientific Publishing Co. Pte. Ltd, Singapore

    Book  MATH  Google Scholar 

  2. Yin C, Chen YQ, Zhong SM (2014) Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12):3173–3181

    Article  MathSciNet  MATH  Google Scholar 

  3. Rossikhin YA, Shitikova MV (2010) Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl Mech Rev 63(1):010801

    Article  Google Scholar 

  4. Freed AD, Diethelm K (2006) Fractional calculus in biomechanics: a 3D viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad. Biomech Model Mech 5(4):203–215

    Article  Google Scholar 

  5. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, London

    MATH  Google Scholar 

  6. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    Article  MathSciNet  MATH  Google Scholar 

  7. Sokolov IM, Klafter J, Blumen A (2000) Ballistic versus diffusive pair dispersion in the Richardson regime. Phys Rev E 61(3):2717–2722

    Article  Google Scholar 

  8. Del-Castillo-Negrete D, Carreras BA, Lynch VE (2003) Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. Phys Rev Lett 91(1):018302

    Article  Google Scholar 

  9. Diethelm K, Ford NJ, Freed AD (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29(1–4):3–22

    Article  MathSciNet  MATH  Google Scholar 

  10. Meerschaert MM, Charles T (2004) Finite difference approximations for fractional advection–dispersion flow equations. J Comput Appl Math 172(1):65–77

    Article  MathSciNet  MATH  Google Scholar 

  11. Diethelm K, Ford NJ, Freed AD, Luchko Y (2005) Algorithms for the fractional calculus: a selection of numerical methods. Comput Method Appl Mech 194(6):743–773

    Article  MathSciNet  MATH  Google Scholar 

  12. Ford NJ, Simpson AC (2001) The numerical solution of fractional differential equations: speed versus accuracy. Numer Algorithm 26(4):333–346

    Article  MathSciNet  MATH  Google Scholar 

  13. Lei SL, Sun HW (2013) A circulant preconditioner for fractional diffusion equations. J Comput Phys 242(3):715–725

    Article  MathSciNet  MATH  Google Scholar 

  14. Pan JY, Ke RH, Ng MK, Sun HW (2014) Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J Sci Comput 36(6):A2698–A2719

    Article  MathSciNet  MATH  Google Scholar 

  15. Bai YQ, Huang TZ, Gu XM (2015) Circulant preconditioned iterations for fractional diffusion equations based on Hermitian and skew-Hermitian splittings. Appl Math Lett 48:14–22

    Article  MathSciNet  MATH  Google Scholar 

  16. Fu H, Wang H (2017) A preconditioned fast finite difference method for space-time fractional partial differential equations. Fract Calc Appl Anal 20(1):88–116

    Article  MathSciNet  MATH  Google Scholar 

  17. Lischke A, Zayernouri M, Karniadakis GE (2017) A Petrov–Galerkin spectral method of linear complexity for fractional multiterm ODEs on the half line. SIAM J Sci Comput 39(3):A922–A946

    Article  MathSciNet  MATH  Google Scholar 

  18. Yuan L, Agrawal OP (2002) A numerical scheme for dynamic systems containing fractional derivatives. J Vib Acoust 124:2321–2324

    Article  Google Scholar 

  19. Singh SJ, Chatterjee A (2006) Galerkin projections and finite elements for fractional order derivatives. Nonlinear Dyn 45(1):183–206

    Article  MathSciNet  MATH  Google Scholar 

  20. Atanackovic TM, Stankovic B (2008) On a numerical scheme for solving differential equations of fractional order. Mech Res Commun 35(7):429–438

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang S, Ying Y, Lian Y, Lin S, Yang Y, Wagner GJ, Liu WK (2016) Differential operator multiplication method for fractional differential equations. Comput Mech 58(5):1–10

    Article  MathSciNet  MATH  Google Scholar 

  22. Trinks C, Ruge P (2002) Treatment of dynamic systems with fractional derivatives without evaluating memory-integrals. Comput Mech 29:471–476

    Article  MathSciNet  MATH  Google Scholar 

  23. Diethelm K (2008) An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives. Numer Algorithm 47:4361–4390

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu JF, Hanyga A (2005) Wave field simulation for heterogeneous porous media with singular memory drag force. J Comput Phys 208(2):651–674

    Article  MATH  Google Scholar 

  25. Birk C, Song C (2010) An improved non-classical method for the solution of fractional differential equations. Comput Mech 46(5):721–734

    Article  MathSciNet  MATH  Google Scholar 

  26. Lian Y, Wagner GJ, Liu WK (2017) A Meshfree method for the fractional advection-diffusion equation. In: Griebel M, Schweitzer M (eds) Meshfree methods for partial differential equations VIII. Lecture Notes in Computational Science and Engineering, vol 115. Springer, Cham

  27. BhrawyAH Baleanu AHB, Taha TM (2013) A modified generalized Laguerre spectral method for fractional differential equations on the half line. Abstr Appl Anal 2013(3):1401–1429

    MathSciNet  Google Scholar 

  28. Capobianco MR, Criscuolo G (2007) Some remarks on the numerical computation of integrals on an unbounded interval. Numer Algorithm 45(1–4):37–48

    Article  MathSciNet  MATH  Google Scholar 

  29. Mastroianni G, Monegato G (1995) Convergence of product integration rules over (0, ∞) for functions with weak singularities at the origin. Math Comput 64(209):237–249

    MathSciNet  MATH  Google Scholar 

  30. Leung AYT, Guo Z (2011) Forward residue harmonic balance for autonomous and non-autonomous systems with fractional derivative damping. Commun Nonlinear Sciand Numer Simul 16(4):2169–2183

    Article  MathSciNet  MATH  Google Scholar 

  31. Khang NV, Thuy BT, Chien TQ (2016) Resonance oscillation of third-order forced van der Pol system with fractional-order derivative. J Comput Nonlinear Dyn 11(4):041030

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (41030331, 11572356, 11672337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Chen.

Appendix: Determination of initial conditions for general system of Eq. (26)

Appendix: Determination of initial conditions for general system of Eq. (26)

Consider a more general form of Eq. (26)

$$ D^{\lambda } z = Az + f(t),\quad z(0) = z_{0} \quad (0 < \lambda < 1) $$
(A1)

where \( z = [z_{1} ,z_{2} , \ldots ,z_{r} ]^{T} \) is the r-dimensional unknown vector and A denotes a matrix of dimension \( r \times r \). For simplicity, we assume that \( f(t) \) at t = 0 can be expanded as

$$ f(t) = f(0) + \sum\limits_{i = 1}^{s} {c_{i} t^{{\gamma_{i} }} } + o(t) $$
(A2)

herein \( 0 < \gamma_{1} < \cdots < \gamma_{s} \le 1 \), and \( o(t) \) denotes higher order terms. To determine initial condition \( z^{'} (0) \), we need to estimate the asymptotic behavior of \( z \) as \( t \) approaches 0. To do so, we approximate the solution of Eq. (A1) as [5]

$$ z(t) = z(0) + \sum\limits_{l = 1}^{L} {d_{l} t^{l\lambda } } + \sum\limits_{i = 1}^{S} {\bar{c}_{i} t^{{\lambda + \gamma_{i} }} } + o(t) $$
(A3)

where the coefficients are \( \bar{c}_{i} = \frac{B(\beta ,1 - \alpha )\beta }{\Gamma (1 - \alpha )}c_{i} \) with \( B(\beta ,1 - \alpha ) \) as the Beta function being defined as \( B(\beta ,1 - \alpha ) = \int_{0}^{1} {x^{\beta - 1} (1 - x)^{1 - \alpha - 1} } dx \), and \( d_{1} = \lambda \Gamma (\lambda )(Az(0) + f(0)) \) and \( d_{l + 1} = \frac{(l + 1)\lambda B((l + 1)\lambda ,1 - \lambda )}{\Gamma (1 - \lambda )}d_{l} \) with \( l = 1,2, \ldots ,L - 1 \).

Note that, there is singularity in \( z^{'} (0) \) according to Eq. (A3) as long as there are fractional powers lower than \( t \). Before applying the improved method, we should first eliminate the singularity. Assume all the fractional powers lower than \( t \) in (A3) are \( \sum\limits_{l = 1}^{{L_{1} }} {d_{l} t^{l\lambda } } + \sum\limits_{i = 1}^{{S_{1} }} {\bar{c}_{i} t^{{\lambda + \gamma_{i} }} } \) where \( L_{ 1} \lambda < 1\le (L_{ 1} + 1)\lambda \) and \( \lambda + \gamma_{{S_{ 1} }} < 1 \le \lambda + \gamma_{{S_{ 1} + 1}} \). Introduce a transformation \( y(t) = z(t) - z(0) - \sum\limits_{l = 1}^{{L_{1} }} {d_{l} t^{l\lambda } } - \sum\limits_{i = 1}^{{S_{1} }} {\bar{c}_{i} t^{{\lambda + \gamma_{i} }} } \) to Eq. (A1), we have

$$ D^{\lambda } y = Ay + f_{1} (t),\quad y(0) = 0 $$
(A4)

where \( f_{1} (t) = d_{{L_{1} }} t^{{L_{1} \lambda }} + c_{{S_{1} }} t^{{\gamma_{{S_{1} }} }} + {\text{higher terms}} \) which yields a solution being approximated as

$$ y(t) = \bar{d}_{{L_{1} }} t^{{(L_{1} + 1)\lambda }} + \bar{c}_{{S_{1} }} t^{{\gamma_{{S_{1} }} + \lambda }} + o(t) $$
(A5)

Based on Eq. (A5), \( y^{{\prime }} (0) \) can be determined as: (1) \( y^{{\prime }} (0) = \bar{d}_{{L_{1} }} + \bar{c}_{{S_{1} }} \) if \( (L_{ 1} + 1)\lambda = \gamma_{{S_{1} }} + \lambda = 1 \); or (2) \( y^{{\prime }} (0) = \bar{d}_{{L_{1} }} \) if \( (L_{ 1} + 1)\lambda = 1 \) and \( \gamma_{{S_{1} }} + \lambda > 1 \); or (3) \( y^{{\prime }} (0) = \bar{c}_{{S_{1} }} \) if \( (L_{ 1} + 1)\lambda > 1 \) and \( \gamma_{{S_{1} }} + \lambda = 1 \); otherwise (4) \( y^{{\prime }} (0) = 0 \) if \( (L_{ 1} + 1)\lambda > 1 \) and \( \gamma_{{S_{1} }} + \lambda > 1 \). After determining the initial condition \( y^{{\prime }} (0) \), the improved method is employed to solve Eq. (A4) rather than (A1).

As for Eq. (26) with \( f(t) = \frac{1}{\Gamma (2 - \lambda )}t^{ 1- \lambda } + t + o(t) \) and \( z(0) = 0 \), by using the above procedures we obtain the initial condition as \( z^{{\prime }} (0) = 1 \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q.X., Chen, Y.M. & Liu, J.K. An improved Yuan–Agrawal method with rapid convergence rate for fractional differential equations. Comput Mech 63, 713–723 (2019). https://doi.org/10.1007/s00466-018-1621-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1621-6

Keywords

Navigation