Skip to main content
Log in

A Numerical Method to Solve Higher-Order Fractional Differential Equations

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a new numerical method to solve fractional differential equations. Given a fractional derivative of arbitrary real order, we present an approximation formula for the fractional operator that involves integer-order derivatives only. With this, we can rewrite FDEs in terms of a classical one and then apply any known technique. With some examples, we show the accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikhanov A.A.: Boundary value problems for the diffusion equation of the variable order in differential and difference settings. Appl. Math. Comput. 219(8), 3938–3946 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Atanacković T.M., Stankovic B.: An expansion formula for fractional derivatives and its application. Fract. Calc. Appl. Anal. 7(3), 365–378 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Atanacković T.M., Stankovic B.: On a numerical scheme for solving differential equationsof fractional order. Mech. Res. Comm. 35(7), 429–438 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.: Generalized fractional order Bloch equation with extended delay. Int. J. Bifurc. Chaos 22(4), 1250071, p. 15 (2012)

  5. Butera S., Paola M.D.: Fractional differential equations solved by using Mellin transform. Commun. Nonlinear Sci. Numer. Simul. 19(7), 2220–2227 (2014)

    Article  MathSciNet  Google Scholar 

  6. Caputo M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. Royal Astronom. Soc. 13(5), 529–539 (1967)

    Article  MathSciNet  Google Scholar 

  7. Chen D., Sheng H., Chen Y., Xue D.: Fractional-order variational optical flow model for motion estimation. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 371, 20120148–20120148 (2013)

  8. Das S., Gupta P.K.: A mathematical model on fractional Lotka–Volterra equations. J. Theor. Biol. 277(1), 1–6 (2011)

    Article  MathSciNet  Google Scholar 

  9. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics, vol. 2004. Springer, Berlin (2010)

  10. Ezzat M.A., El-Karamany A.S., El-Bary A.A., Fayik M.A.: Fractional calculus in one-dimensional isotropic thermo-viscoelasticity. C. R. Mec. 341(7), 553–566 (2013)

    Article  Google Scholar 

  11. Galeone L., Garrappa R.: On multistep methods for differential equations of fractional order. Mediterr. J. Math. 3, 565–580 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gulsu M., Ozturk Y., Anapali A.: Numerical approach for solving fractional Fredholm integro-differential equation. Int. J. Comput. Math. 90(7), 1413–1434 (2013)

    Article  MATH  Google Scholar 

  13. Henderson J., Ouahab A.: A Filippov’s theorem, some existence results and the compactness of solution sets of impulsive fractional order differential inclusions. Mediterr. J. Math. 9(3), 453–485 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hilfer R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  15. Jafari H., Khalique C.M., Ramezani M., Tajadodi H.: Numerical solution of fractional differential equations by using fractional B-spline. Cent. Eur. J. Phys. 11(10), 1372–1376 (2013)

    Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam (2006)

  17. Leung A.Y.T., Yang H.X., Zhu P., Guo Z.J.: Steady state response of fractionally damped nonlinear viscoelastic arches by residue harmonic homotopy. Comput. Struct. 121, 10–21 (2013)

    Article  Google Scholar 

  18. Li C., Chen A., Ye J.: Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230(9), 3352–3368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mueller S., Kaestner M., Brummund J., Ulbricht V.: On the numerical handling of fractional viscoelastic material models in a FE analysis. Comput. Mech. 51(6), 999–1012 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nerantzaki M.S., Babouskos N.G.: Vibrations of inhomogeneous anisotropic viscoelastic bodies described with fractional derivative models. Eng. Anal. Bound. Elem. 36(12), 1894–1907 (2012)

    Article  MathSciNet  Google Scholar 

  21. Oldham KB, Spanier J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  22. Pedas A., Tamme E.: Numerical solution of nonlinear fractional differential equations by spline collocation methods. J. Comput. Appl. Math. 255(1), 216–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Podlubny I.: Fractional Differential Equations. Academic Press, Inc., San Diego (1999)

    MATH  Google Scholar 

  24. Pooseh S., Almeida R., Torres D.F.M.: Numerical approximations of fractional derivatives with applications. Asian J. Control 15(3), 698–712 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sousa, E.: How to approximate the fractional derivative of order 1 <  α ≤ 2. Internat. J. Bifur. Chaos Appl. Sci. Engrg.22(4), 1250075 p. 13 (2012)

  26. Stojanovic M.: Wave equation driven by fractional generalized stochastic processes. Mediterr. J. Math. 10(4), 1813–1831 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yan Z., Jia X.: Impulsive problems for fractional partial neutral functional integro-differential inclusions with infinite delay and analytic resolvent operators. Mediterr. J. Math. 11(2), 393–428 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Almeida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, R., Bastos, N.R.O. A Numerical Method to Solve Higher-Order Fractional Differential Equations. Mediterr. J. Math. 13, 1339–1352 (2016). https://doi.org/10.1007/s00009-015-0550-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-015-0550-2

Mathematics Subject Classfication

Keywords

Navigation