Skip to main content
Log in

Durable and Wearable Self-powered Temperature Sensor Based on Self-healing Thermoelectric Fiber by Coaxial Wet Spinning Strategy for Fire Safety of Firefighting Clothing

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Self-healable electronics with self-recoverable mechanical properties show a lot of potential in improving the reliability and durability of wearable electronic devices, but it is still challenging. Herein, a self-healing core-sheath thermoelectric (TE) fiber-based temperature sensor was continuously fabricated by coaxial wet-spinning strategy, whose core layer and sheath layer are, respectively, pure Ti3C2Tx MXene and self-healing silk sericin (SS)/oxide sodium alginate (OSA) composite. The prepared SS/OSA@MXene core-sheath TE fiber exhibits accurate temperature-sensing at 200–400 °C based on a linear relationship between TE voltage and temperature difference. The core-sheath TE fiber that can be integrated into firefighting clothing and timely alert firefighters to evacuate from the fire before the protective clothing becomes damaged. When exposed to flames, SS/OSA@MXene can rapidly trigger a high-temperature warning voltage of 3.36 mV within 1.17 s and exhibit reversible high-temperature alarm performance. In addition, the fractured SS/OSA@MXene can restore up to 89.12% of its original strain limit at room temperature because of the robust yet reversible dynamic covalent bonds between SS and OSA. In this study, an ingenious strategy for developing a durable and wearable TE fiber-based self-powered temperature sensor was proposed. This strategy has promising application prospects in real-time temperature detection of firefighting clothing to ensure the safety of firefighters operating on a fire scene.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Lv LY, Cao CF, Qu YX, Zhang GD, Zhao L, Cao K, Song PA, Tang LC. Smart fire-warning materials and sensors: design principle, performances, and applications. Mater Sci Eng R Rep. 2022;150:100690.

    Article  Google Scholar 

  2. Otrachshenko V, Nunes LC. Fire takes no vacation: impact of fires on tourism. Environ Dev Econ. 2022;27:86–101.

    Article  Google Scholar 

  3. Lu S, Mel P, Wang J, Zhang HP. Fatality and influence factors in high-casualty fires: a correspondence analysis. Saf Sci. 2012;50:1019–33.

    Article  Google Scholar 

  4. He HL, Liu JR, Wang YS, Zhao YH, Qin Y, Zhu ZY, Yu ZC, Wang JF. An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano. 2022;16:2953–67.

    Article  CAS  PubMed  Google Scholar 

  5. Yu ZC, Zhu ZY, Zhang YZ, Li XQ, Liu X, Qin Y, Zheng ZR, Zhang LY, He HL. Biodegradable and flame-retardant cellulose-based wearable triboelectric nanogenerator for mechanical energy harvesting in firefighting clothing. Carbohydr Polym. 2024;334:122040.

    Article  CAS  PubMed  Google Scholar 

  6. Wang JX, He JM, Ma LL, Zhang Y, Shen LH, Xiong SX, Li KS, Qu MN. Multifunctional conductive cellulose fabric with flexibility, superamphiphobicity and flame-retardancy for all-weather wearable smart electronic textiles and high-temperature warning device. Chem Eng J. 2020;390:124508.

    Article  Google Scholar 

  7. Zhang MJ, Wang ML, Zhang MX, Yang CG, Li YN, Zhang YM, Hu JT, Wu GZ. Flexible and thermally induced switchable fire alarm fabric based on layer-by-layer self-assembled silver sheet/Fe3O4 nanowire composite. ACS Appl Mater Interfaces. 2019;11:47456–67.

    Article  CAS  PubMed  Google Scholar 

  8. Wang BL, Lai XJ, Li HQ, Jiang CC, Gao JF, Zeng XR. Multifunctional MXene/Chitosan-coated cotton fabric for intelligent fire protection. ACS Appl Mater Interfaces. 2021;13:23020–9.

    Article  CAS  PubMed  Google Scholar 

  9. Li XL, Saez JSD, Ao X, Yusuf A, Wang DY. Highly-sensitive fire alarm system based on cellulose paper with low-temperature response and wireless signal conversion. Chem Eng J. 2022;431:134108.

    Article  CAS  Google Scholar 

  10. Khan F, Wang SC, Ma ZW, Ahmed A, Song PG, Xu ZG, Liu RP, Chi HJ, Gu JY, Tang LC, Zhao Y. A durable, flexible, large-area, flame-retardant, early high temperature warning sensor with built-in patterned electrodes. Small Methods. 2021;5:2001040.

    Article  CAS  Google Scholar 

  11. Xu H, Li Y, Huang NJ, Yu ZR, Wang PH, Zhang ZH, Xia QQ, Gong LX, Li SN, Zhao GD, Zhang L, Tang LC. Temperature-triggered sensitive resistance transition of graphene oxide wide-ribbons wrapped sponge for fire ultrafast detecting and early warning. J Hazard Mater. 2019;363:286–94.

    Article  CAS  PubMed  Google Scholar 

  12. Cao CF, Liu WJ, Xu H, Yu KX, Gong LX, Guo BF, Li YT, Feng XL, Lv LY, Pan HT, Zhao L, Li JY, Gao JF, Zhang GD, Tang LC. Temperature-induced resistance transition behaviors of melamine sponge composites wrapped with different graphene oxide derivatives. J Mater Sci Technol. 2021;85:194–204.

    Article  CAS  Google Scholar 

  13. Bosch I, Gomez S, Vergara L. A ground system for early forest fire detection based on infrared signal processin. Int J Remote Sens. 2011;32:4857–70.

    Article  Google Scholar 

  14. Mao M, Xu H, Guo KY, Zhang JW, Xia QQ, Zhang GD, Zhao L, Gao JF, Tang LC. Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and high temperature warning response. Compos Part A Appl Sci Manuf. 2021;140:106191.

    Article  CAS  Google Scholar 

  15. Huang NJ, Xia QQ, Zhang ZH, Zhao L, Zhang GD, Gao JF, Tang LC. Simultaneous improvements in fire resistance and alarm response of GO paper via one-step 3-mercaptopropyltrimethoxysilane functionalization for efficient fire safety and prevention. Compos Part A Appl Sci Manuf. 2020;131:105797.

    Article  CAS  Google Scholar 

  16. Wu Q, Gong LX, Li Y, Cao CF, Tang LC, Wu LB, Zhao L, Zhang GD, Li SN, Gao JF, Li YJ, Mai YW. Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings. ACS Nano. 2018;12:416–24.

    Article  CAS  PubMed  Google Scholar 

  17. Chen GQ, Yuan BH, Zhan YY, Dai HM, He S, Chen XF. Functionalized graphene paper with the function of fuse and its flame-triggered self-cutting performance for fire-alarm sensor application. Mater Chem Phys. 2020;252:123292.

    Article  CAS  Google Scholar 

  18. Qu ZC, Xu CA, Li XB, Wu YF, Wang KX, Zheng XL, Cui XH, Wu XK, Shi J, Wu K. Facile preparation of BP-MoS2/GO composite films with excellent flame retardancy and ultrasensitive response for smart fire alarm. Chem Eng J. 2021;426:130717.

    Article  CAS  Google Scholar 

  19. Chen WH, Liu PJ, Liu Y, Wang Q, Duan WF. A temperature-induced conductive coating via layer-by-layer assembly of functionalized graphene oxide and carbon nanotubes for a flexible, adjustable response time flame sensor. Chem Eng J. 2018;353:115–25.

    Article  CAS  Google Scholar 

  20. Zhang ZH, Zhang JW, Cao CF, Guo KY, Zhao L, Zhang GD, Gao JF, Tang LC. Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response. Chem Eng J. 2020;386:123894.

    Article  CAS  Google Scholar 

  21. Yu ZC, Wan YH, Qin Y, Jiang Q, Guan JP, Cheng XW, Wang XC, Ouyang SN, Qu XR, Zhu ZY, Wang JF, He HL. High fire safety thermal protective composite aerogel with efficient thermal insulation and reversible high temperature warning performance for firefighting clothing. Chem Eng J. 2023;477:147187.

    Article  CAS  Google Scholar 

  22. Wu HJ, Zhang Y, Ning SC, Zhao LD, Pennycook SJ. Seeing atomic-scale structural origins and foreseeing new pathways to improved thermoelectric materials. Mater Horizons. 2019;6:1548–70.

    Article  CAS  Google Scholar 

  23. Zheng YY, Han X, Yang JW, Jing YY, Chen XY, Li QQ, Zhang T, Li GD, Zhu HT, Zhao HZ, Snyder GJ, Zhang K. Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy Environ Sci. 2022;15:2374–85.

    Article  CAS  Google Scholar 

  24. Zheng YY, Zhang QH, Jin WL, Jing YY, Chen XY, Han X, Bao QY, Liu YP, Wang XH, Wang SR, Qiu YP, Di CA, Zhang K. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics. J Mater Chem A. 2020;8:2984–94.

    Article  CAS  Google Scholar 

  25. Jing YY, Luo J, Han X, Yang JW, Liu QL, Zheng YY, Chen XY, Huang FL, Chen JW, Zhuang QL, Shen YA, Chen HS, Zhao HZ, Snyder GJ, Li GD, Zhang T, Zhang K. Scalable manufacturing of a durable, tailorable, and recyclable multifunctional woven thermoelectric textile system. Energy Environ Sci. 2023;16:4334–44.

    Article  CAS  Google Scholar 

  26. Chen XY, Yang XN, Han X, Ruan ZP, Xu JC, Huang FL, Zhang K. Advanced thermoelectric textiles for power generation: principles, design, and manufacturing. Global Chall. 2023;8:2300023.

    Article  Google Scholar 

  27. Guo KY, Wu Q, Mao M, Chen H, Zhang GD, Zhao L, Gao JF, Song PG, Tang LC. Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Compos B Eng. 2020;193:108017.

    Article  CAS  Google Scholar 

  28. Zhao ZH, Fu HR, Tang RT, Zhang BC, Chen YM, Jiang JQ. Failure mechanisms in flexible electronics. Int J Smart Nano Mater. 2023;14:510–65.

    Article  Google Scholar 

  29. Qin S, Usman KAS, Hegh D, Seyedin S, Gogotsi Y, Zhang JZ, Razal JM. Development and applications of MXene-based functional fibers. ACS Appl Mater Interfaces. 2021;13:36655–69.

    Article  CAS  PubMed  Google Scholar 

  30. Xia Z, Shao YL. Wet spinning assembled graphene fiber: processing, structure, property, and smart applications. Acta Phys Chim Sin. 2022;38:2103046.

    Article  Google Scholar 

  31. Cai JY, Du MJ, Li ZL. Flexible temperature sensors constructed with fiber materials. Adv Mater Technol. 2022;7:2101182.

    Article  Google Scholar 

  32. Cai SY, Xu CS, Jiang DF, Yuan ML, Zhang QW, Li ZL, Wang Y. Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy. 2022;93:106904.

    Article  CAS  Google Scholar 

  33. Lv XS, Liu Y, Yu JY, Li ZL, Ding B. Smart fibers for self-powered electronic skins. Adv Fiber Mater. 2023;5:401–28.

    Article  Google Scholar 

  34. He HL, Qin Y, Liu JR, Wang YS, Wang JF, Zhao YH, Zhu ZY, Jiang Q, Wan YH, Qu XR, Yu ZC. A wearable self-powered high temperature warning e-textile enabled by aramid nanofibers/MXene/silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chem Eng J. 2023;460:141661.

    Article  CAS  Google Scholar 

  35. He HL, Qin Y, Zhu ZY, Jiang Q, Ouyang SN, Wan YH, Qu XR, Xu J, Yu ZC. Temperature-arousing self-powered high temperature warning e-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano Micro Lett. 2023;15:226.

    Article  CAS  Google Scholar 

  36. Liu LX, Chen W, Zhang HB, Zhang Y, Tang PP, Li DY, Deng ZM, Ye L, Yu ZZ. Tough and electrically conductive Ti3C2Tx MXene-based core–shell fibers for high-performance electromagnetic interference shielding and heating application. Chem Eng J. 2022;430:133074.

    Article  CAS  Google Scholar 

  37. Zhang HX, Wu W, Ma H, Cao JD. Hollow graphene fibres of highly ordered structure via coaxial wet spinning with application to multi-functional flexible wearables. Colloids Surf A Physicochem Eng Asp. 2021;615:126193.

    Article  CAS  Google Scholar 

  38. Bi X, Di H, Liu J, Meng YF, Song YY, Meng WH, Qu HQ, Fang LD, Song PA, Xu JZ. A core–shell-structured APP@COFs hybrid for enhanced flame retardancy and mechanical property of epoxy resin (EP). Adv Compos Hybrid Mater. 2022;5:1743–55.

    Article  CAS  Google Scholar 

  39. Xia L, Miao ZX, Dai JG, Zhu AQ, Xu H, Zhong JH, Chen Y, Luo WA, Xu YT, Yuan CH, Zeng BR, Cao HS, Dai LZ. Facile fabrication of multifunctional flame retardant epoxy resin by a core–shell structural AgNC@boronate polymer. Chem Eng J. 2022;438:135402.

    Article  CAS  Google Scholar 

  40. Yu YM, Zhang Y, Xi LD, Zhao ZN, Huo SQ, Huang GB, Fang ZP, Song PA. Interface nanoengineering of a core–shell structured biobased fire retardant for fire-retarding polylactide with enhanced toughness and UV protection. J Clean Prod. 2022;336:130372.

    Article  CAS  Google Scholar 

  41. Wu X, Gao NW, Zheng XT, Tao XL, He YL, Liu ZP, Wang YP. Self-powered and green ionic-type thermoelectric paper chips for early fire alarming. ACS Appl Mater Interfaces. 2020;12:27691–9.

    Article  CAS  PubMed  Google Scholar 

  42. Mao M, Yu KX, Cao CF, Gong LX, Zhang GD, Zhao L, Song PA, Gao JF, Tang LC. Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant high temperature warning. Chem Eng J. 2022;427:131615.

    Article  CAS  Google Scholar 

  43. Shen YN, Han X, Zhang PY, Chen XY, Yang X, Liu D, Yang XN, Zheng XH, Chen HS, Zhang K, Zhang T. Review on fiber-based thermoelectrics: materials, devices, and textiles. Adv Fiber Mater. 2023;5:1105–40.

    Article  CAS  Google Scholar 

  44. Jiang WK, Li TT, Hussain B, Zhou SB, Wang ZS, Peng Y, Hu JC, Zhang KQ. Facile fabrication of cotton-based thermoelectric yarns for the construction of textile generator with high performance in human heat harvesting. Adv Fiber Mater. 2023;5:1725–36.

    Article  CAS  Google Scholar 

  45. Cui YF, He XY, Liu WD, Zhu SY, Zhou M, Wang Q. Highly stretchable, sensitive, and multifunctional thermoelectric fabric for synergistic-sensing systems of human signal monitoring. Adv Fiber Mater. 2023;6:170–80.

    Article  Google Scholar 

  46. Liu SJ, Yang YW, Chen SS, Zheng JZ, Lee DG, Li D, Yang JL, Huang BL. High p- and n-type thermopowers in stretchable self-healing ionogels. Nano Energy. 2022;100:107542.

    Article  CAS  Google Scholar 

  47. Xie HL, Lai XJ, Li HQ, Gao JF, Zeng XR. Skin-inspired thermoelectric nanocoating for temperature-sensing and fire safety. J Colloid Interface Sci. 2021;602:756–66.

    Article  CAS  PubMed  Google Scholar 

  48. Fu T, Zhao X, Chen L, Wu WS, Zhao Q, Wang XL, Guo DM, Wang YZ. Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine. Adv Funct Mater. 2019;29:1806586.

    Article  Google Scholar 

  49. Pourjavadi A, Tavakolizadeh M, Hosseini SH, Rabiee N, Bagherzadeh M. Highly stretchable, self-adhesive, and self-healable double network hydrogel based on alginate/polyacrylamide with tunable mechanical properties. J Polym Sci. 2020;58:2062–73.

    Article  CAS  Google Scholar 

  50. Zhu MM, Yu JY, Li ZL, Ding B. Self-healing fibrous membranes. Angew Chem Inter Ed. 2022;61:e202208949.

    Article  CAS  Google Scholar 

  51. Zhu MM, Li JL, Yu JY, Li ZL, Ding B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew Chem Inter Ed. 2022;61:e202200226.

    Article  CAS  Google Scholar 

  52. Cheng YF, Xie YM, Ma YA, Wang MJ, Zhang YH, Liu ZY, Yan SW, Ma N, Liu MY, Yue Y, Wang JB, Li LY. Optimization of ion/electron channels enabled by multiscale MXene aerogel for integrated self-healable flexible energy storage and electronic skin system. Nano Energy. 2023;107:108131.

    Article  CAS  Google Scholar 

  53. Hui ZY, Zhang LR, Ren GZ, Sun GZ, Yu HD, Huang W. Green flexible electronics: natural materials, fabrication, and applications. Adv Mater. 2023;35:2211202.

    Article  CAS  Google Scholar 

  54. Li JL, Cai JY, Yu JY, Li ZL, Ding B. The rising of fiber constructed piezo/triboelectric nanogenerators: from material selections, fabrication techniques to emerging applications. Adv Funct Mater. 2023;33:2303249.

    Article  CAS  Google Scholar 

  55. Basset P, Beeby SP, Bowen C, Chew ZJ, Delbani A, Dharmasena RDIG, Dudem B, Fan FR, Galayko D, Guo HY, Hao JH, Hou YC, Hu CG, Jing QS, Jung YH, Karan SK, Kar-Narayan S, Kim M, Kim SW, Kuang Y, Lee KJ, Li JL, Li ZL, Long Y, Priya S, Pu XJ, Ruan TW, Silva SRP, Wang HS, Wang K, Wang XD, Wang ZL, Wu WZ, Xu W, Zhang HM, Zhang Y, Zhu ML. Roadmap on nanogenerators and piezotronics. APL Mater. 2022;10:109201.

    Article  CAS  Google Scholar 

  56. Siritientong P, Srichana T. Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Manag Res. 2012;30:217–24.

    Article  PubMed  Google Scholar 

  57. Liu J, Shi L, Deng Y, Zou MZ, Cai B, Song Y, Zheng W, Wang L. Silk sericin-based materials for biomedical applications. Biomaterials. 2022;287:121638.

    Article  CAS  PubMed  Google Scholar 

  58. Liang XP, Li HF, Dou JX, Wang Q, He WY, Wang CY, Li DH, Lin JM, Zhang YY. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv Mater. 2020;32:2000165.

    Article  CAS  Google Scholar 

  59. Zhang JJ, Ji Q, Shen XH, Xia YZ, Tan LW, Kong QS. Pyrolysis products and thermal degradation mechanism of intrinsically flame-retardant calcium alginate fibre. Polym Degrad Stab. 2011;96:936–42.

    Article  CAS  Google Scholar 

  60. Negi D, Singh Y. Gallium oxide nanoparticle-loaded, quaternized chitosan-oxidized sodium alginate hydrogels for treatment of bacteria-infected wounds. ACS Appl Nano Mater. 2023;6:13616–28.

    Article  Google Scholar 

  61. Wang P, He HW, Cai R, Tao G, Yang MR, Zuo H, Umar A, Wang YJ. Cross-linking of dialdehyde carboxymethyl cellulose with silk sericin to reinforce sericin film for potential biomedical application. Carbohydr Polym. 2019;212:403–11.

    Article  CAS  PubMed  Google Scholar 

  62. Liu YH, Xian WK, He JL, Li Y. Interplay between entanglement and cross-linking in determining mechanical behaviors of polymer networks. Int J Smart Nano Mater. 2023;14:474–95.

    Article  Google Scholar 

  63. Khattab TA, Kamel S. Advances in polysaccharide-based hydrogels: self-healing and electrical conductivity. J Mol Liq. 2022;352: 118712.

    Article  CAS  Google Scholar 

  64. Zhang HQ, Liu ZJ, Mai JP, Wang N, Liu HJ, Zhong J, Mai XM. A smart design strategy for super-elastic hydrogel with long-term moisture, extreme temperature resistance, and non-flammability. Adv Sci. 2021;8:2100320.

    Article  CAS  Google Scholar 

  65. Qi M, Yang RQ, Wang Z, Liu YT, Zhang QC, He B, Li KW, Yang Q, Wei L, Pan CF, Chen MX. Bioinspired self-healing soft electronics. Adv Funct Mater. 2023;33:2214479.

    Article  CAS  Google Scholar 

  66. Yang JY, Yi LF, Fang X, Song YJ, Zhao LJ, Wu JR, Wu H. Self-healing and recyclable biomass aerogel formed by electrostatic interaction. Chem Eng J. 2019;371:213–21.

    Article  CAS  Google Scholar 

  67. Yang JY, Xia Y, Zhao J, Yi LF, Song YJ, Wu H, Guo SY, Zhao LJ, Wu JR. Flame-retardant and self-healing biomass aerogels based on electrostatic assembly. Chin J Polym Sci. 2020;38:1294–304.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from Guiding Project of Natural Science Foundation of Hubei Province (2022CFC072), Guiding Project of Scientific Research Plan of Education Department of Hubei Province (B2022081), and Science and Technology Guidance Program of China National Textile and Apparel Council (2022002; 2023004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhicai Yu or Hualing He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 38797 kb)

Supplementary file2 (MP4 23918 kb)

Supplementary file3 (MP4 22073 kb)

Supplementary file4 (MP4 18665 kb)

Supplementary file5 (MP4 75874 kb)

Supplementary file6 (MP4 29671 kb)

Supplementary file7 (DOCX 3046 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Wan, Y., Qin, Y. et al. Durable and Wearable Self-powered Temperature Sensor Based on Self-healing Thermoelectric Fiber by Coaxial Wet Spinning Strategy for Fire Safety of Firefighting Clothing. Adv. Fiber Mater. (2024). https://doi.org/10.1007/s42765-024-00416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42765-024-00416-6

Keywords

Navigation